
One Step Up
Development with Omnis 7

Editor:
Hallvard Lærum

Contributing Editors:
Amund Haldorsen

Bjørn Borg Kjølseth

Translated by
Stephen Timmons

© 1994 - AlphaBit a.s
ISBN 82-91465-01-0

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitte, in any form or by any

means, electronic, mechanical, fotocopying, recording, or otherwise,
without the prior permission of AlphaBit a.s.

This book was typeset on a Macintosh computer, using Microsoft
Word™ for Macintosh (v5.1). The following typefaces were used:
Helvetica Narrow, Berkeley Old Style, Nuptial Script, and Wood

Type Ornaments 1, all from Adobe. Most of the figures were created
in Deneba Canvas™ (v3.0 and v3.5) and copied into Word in EPS

format. All graphs were created in Kaleidagraph™ (v2.0) from
Abelbeck Software.

Omnis is a registered trademark of Blyth International. Macintosh is
a registered trademark of Apple Computer Inc. Canvas is a registered

trademark of Deneba Systems Inc.. Kaleidagraph is a registered
trademark of Abelbeck Software. Word, MS-DOS and Windows are

registrered trademarks of Microsoft Corporation.

Printed in Oslo, Norway
by

Trykkeri a.s.

© 1994 AlphaBit a.s
ISBN 82-91465-01-0

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitte,

in any form or by any means, electronic, mechanical,
fotocopying, recording, or otherwise, without the prior

permission of AlphaBit a/s.

This book was typeset on a Macintosh computer, using
Microsoft Word™ for Macintosh (v5.1). The followinf
typefaces were used: Helvetica Narrow, Berkeley Old

Style, Nuptial Script, and Wood Type Ornaments 1.
Most of the figures were created in Deneba Canvas™

(v3.0 and v3.5) and copied into Word in EPS format.
All graphs were created in Blabla Kaleidagraph™

(v2.0)

Omnis is aregistered trademark of Blyth
International, Macintosh is a registered trademark of

Apple Computer. Canvas is areg. tred. of Deneba,
Kaleida of blabla. Word, MS-DOS. Windows are
registrered trademarks of Microsoft Corporation.

Printed in Oslo, Norway
by

Trykkeri a.s.

Aller siste side, nederst sentrert.:

ISBN 82-91465-01-0

Table of Contents

IntroductionI

Introduction
Prologue
How the Book is Put Together
How to Use the Table of

Contents
Before You Begin
How This Book Came About

Glossary

General Methods............ II

The Planning Phase
General Considerations
Evaluation of Data
Comments and Labeling
Working with Procedures

Debugging
General Considerations
Window or Procedure?
How the Procedure Window

Is Built Up
Finding the Right Procedure
Manipulating the Way

Procedures Are Run
Viewing and Altering the

Values of Variables and
Fields

Examining the Sequence of
Procedures

Finding Clutter in the
Application

Debugging in Multi-user Mode
In Conclusion

Layout & the User Interface
A Good Design
Effects
Logical Arrangement of Menus

and Windows

The Database EngineIII

Data Structure: Memory & Hard
Disk

Some Basic Terminology
Structure of Data on Hard Disk
Datafiles
File Formats
Records
Fields
Indexes
The Function of the Internal

Memory
How the Internal Memory is

Organized
Variables

Field Types & Their Function
Introduction
Text Fields
Number Fields
Boolean Fields
Date Fields
Time Fields
Picture Fields
Lists
Binary Fields
Sequence Fields

2 Table of contents

File Connections
In General
Types of Connections
Different Ways of Linking

Files
Commands for Editing Data in

a Datafile
Modifying Contents in a File

of a Higher Level while
Modifying Another File

Elements of an
Application.....................IV

Datafiles & Libraries
Application Structure
Opening and Closing Libraries
Controlling Datafiles
CRB and Datafiles
Opening and Closing Datafiles
Example of a Datafile

Handling Procedure

Sequence of Procedures
Introduction
Field Procedures
Window Control Procedures

(WCPs)
Library Control Procedure

(v2.x)
The Timer Procedure
The Jig-Saw Model
Windows in the Jig-Saw Model
Table Fields in the System

(v2.x)
Set Next Action (SNA)
Queue action
Procedure Stack
Tables of the Jig-Saw Model
Tables - Macintosh
Tables - Windows
“Events” as Evoking Factors

(Macintosh and Windows)

Lists & Tables
What Is a List?
List Settings
Manipulating lists
Displaying Lists in Windows
Displaying Single List Values
Lists Stored in Data Files
Lists Within Lists
Redrawing Lists
Binary Search in Lists
Tables

Data Input........................V

The Ins & Outs of Enter Data
What Is Enter data?
Entering Enter data
Tasks for Enter data
Exiting Enter data
Canceling Enter data
Enter data on Several Levels
Modeless Enter data (v2.x)

Import & Export
Introduction
File Types
Standard Export Tool
Export Via Reports
Exporting to Word Processors
Sequence Numbers
Importing Connected Files
The ‘Import field from file’

and ‘Import data’ Commands
Update or Insert New Record?

Data Output................... VI

CommunicationVII

3rd Generation
Programming...............VIII

External Routines
Introduction

Table of Contents 3

What Is an External Routine?
Examples of External Routines
Can I Create an External

Routine?
Where Do External Routines

Have to Be before I Can
Have Access to Them?

When Should I Use External
Routines?

Which Functions in Omnis Are
Used in Connection With
External Routines?

What Functions May I Use in
an External Routine?

What Does the Code in an
External Routine Look Like?

The Stack Problem
What If I Want to Know More?
Difficult Words
An Example with Source Code

Introduction to Notation
What is Notation?
The Branched System
How to Write Notational

Expressions
Syntax and Debugging
Windows and Notation

Special Topics............... IX

Keyboard Shortcuts
Using Keyboard Shortcuts
Increasing the Number of

Potential Hotkeys (v2.x only)
Standard Hotkeys
Word Processing Techniques
Hot keys in v3.0

Beyond the Tricky Bit ...X

Introduction

Prologue.. 2
Frustration: Act I
Frustration: Act II
The work of a developer involves more than code

How the Book is Put Together .. 4
Form and content
Structure
Layout and design

How to Use the Table of Contents.. 6
Before You Begin.. 7
How This Book Came About.. 8

2 Introduction

Prologue

This book is meant for you, an Omnis developer. Its aim is to explain
important principles, help you when you get stuck, and perhaps be
what it takes for all the pieces to come together when Omnis appears
hopelessly complicated.

Frustration: Act I

Programming in Omnis isn’t always that easy. Everything looks so
simple and tidy to begin with. For many of us, our first encounter
with Omnis is one of sheer enchantment. We’re easily won over by
the enormous possibilities that this developer’s tool represents, and
our creative urges are so difficult to harness that we can kiss good-
bye to a good night’s sleep for a while. Windows, reports, menus –
everything is there, waiting to be used. Nor is there any reason to
hide the fact that Omnis truly is a unique development environment.
Nevertheless, rough times lie ahead. Maybe it’s the initial
enthusiasm, or maybe it’s just our unfamiliarity with the product, but
sooner or later we’re sure to run up against a brick wall: at some
point we won’t be able to get a certain procedure or window to work
the way we want it to. This is the moment of frustration. Our
infatuation begins to cool and our mood turns to gloom. The
workday once again becomes a bleak prospect, and Omnis gets all
the blame!

Frustration: Act II

Hopefully, this is where this book can come to your rescue. Its aim is
to help you get past the steepest part of the learning curve and get a
firm grip on the many aspects of a developer’s work as rapidly as
possible. Once you clear this first, intimidating hurdle, everything
will begin to go a lot more smoothly.

Maturing as a developer is more than just mastering various
functions and commands; it’s also about understanding what goes on
inside the program, about what makes Omnis tick. So this book is
geared more toward imparting a basic understanding of the principles

Introduction 3

of Omnis, and less toward dispensing a few highly technical
procedures.

The work of a developer involves more than code

Because we wanted to cover every aspect of a developer’s work, this
book contains chapters on planning and debugging. These subjects
may seem like side issues, but in their own way they are every bit as
important as the other topics that are dealt with. Moreover, database
development is a great deal more than merely transferring data to and
from various storage media. The ultimate goal of any application is
to provide a forum where information may be stored and retrieved in
some rational way. The interplay between application and user is an
inescapable link in this chain. Yes, the application must function
well here, but quite a different set of factors determines how
successful the user interface will be. For this reason I’ve also chosen
to deal with these more “artistic” aspects, in a separate chapter
entitled “Layout and the User Interface.”

4 Introduction

How the Book is Put Together

Form and content

“One Step Up” is for the more advanced developer, who will already
have plowed through the instruction manuals that came with Omnis.
Further, it is meant as a supplement to the handbooks; selected topics
are given detailed treatment, and from time to time information will
be provided that you won’t find anywhere in the manuals. To
understand the descriptions and follow the thrust of the discussion,
you’ll need a working knowledge of the most important commands
and their functions. Many of the paragraphs are illustrated with
explanatory procedures and figures. You are free to use any of these
procedures in your own applications; they’ve been thoroughly tested.

When setting out to learn the ropes in Omnis, the developer is faced
with mounds of reading material. The technical content calls for a
style of writing that puts a premium on correctness and precision;
however, this often results in dry, vapid, tedious prose. The reading
can be heavy going indeed! In view of this fact, I have tried my best
to write in a style that is more direct and personal. On occasion I
confess to having cut some linguistic capers, which you mustn’t take
too seriously; the book was written with passion. Needless to say, the
more colorful remarks should be taken with a grain of salt. At the
risk of appearing dogmatic and too categorical, I have tried to cut my
way to the bottom line through the dense and luxuriant forest of
potential that Omnis represents and give you my personal
recommendations based on practical experience.

Others’ experience may well be at odds with our own. No problem;
this is as it should be. A good wholesome discussion never hurt
anybody, and the one who stands to gain the most is the end-user.
We welcome your viewpoints, suggestions for improvement, or
requests for subjects you’d like to see dealt with.

Introduction 5

Structure

“One Step Up” is divided into sections that correspond to main areas,
which will be expanded from time to time with new chapters that
address each problem area. These will be sent to subscribers on a
continuing basis. Every time Omnis appears in a new version, those
chapters of our book that need updating will be rewritten and sent
out in the same manner. We have decided to use a 3-ring binder
system in which chapters can be replaced individually, as needed,
with new, updated versions. For this reason, each chapter must be
numbered separately. Because new ones are always being added, the
page numbering must take this into account. So the chapters
themselves will not be numbered; rather, our hope is that a logical
division of the contents and a lucid, well-arranged Table of Contents
will serve as a satisfactory guide to the main topics you are looking
for.

Layout and design

Paragraph prompts appear in the margin, in italics. The procedure
examples follow directly after their respective subjects, framed and
with the procedure title shaded gray. Where the procedure lines
exceed one line, an ellipsis (…) indicates that the next line is a
continuation of the previous one. A number of tips are scattered
throughout the book; these appear in frames and reflect the subject
matter that precedes them. Commands, format names, etc. that
originate in Omnis are enclosed in single quotation marks, e.g.:
‘Load from list.’ A smattering of conclusions and personal
comments of a more or less serious nature also appear here and
there; these are set off by ornaments, like the following:

qCHhcq
Could anything be as fun as programming with

Omnis?

qCcq

6 Introduction

Introduction 7

How to Use the Table of Contents

Look for the main subject area in the Table of Contents. Grouped
under each section is an overview of the chapters currently available
under these main headings. There are no page numbers in the Table
of Contents, because page numbering starts anew with each chapter.
However, in the book proper, there is a footer at the bottom of every
page that tells you which chapter you’re in; and each chapter is
separated by a colored divider. At the beginning of each chapter
there is a complete Table of Contents (this time with page numbers);
this is the place to look for specific page numbers.

A glossary at the back of Section 1 provides descriptions and
definitions of a few difficult terms and abbreviations. In general,
however, each concept and term will be explained along the way.

8 Introduction

Before You Begin

It’s time to roll up your sleeves and hunker down at the keyboard. If
you haven’t read “Introducing Omnis” and “Tutorial” (and browsed
through “Reference 1” and “Reference 2”) you should do so. Who
said life was a bowl of cherries, anyway? You need to have some
idea of what each command is for. Keep the manual close by, and
don’t hesitate to use it; there’s an awful lot to remember. Try
following up the tips on your own, using the resources of Omnis.
That way you won’t be as likely to forget, and you’ll find out soon
enough if you’ve understood the tip correctly.

Use test applications!
By all means, jump right in and test the waters – but
preferably not with something you intend to sell or
deliver. An application programmed during the learn-
ing phase is never very good; it can quickly become an
impenetrable maze and a chore to work with.

qCHhcq
It’s often easier to start from scratch

than to work back from the other end.

qCcq

Introduction 9

How This Book Came About

“One Step Up” was initially conceived as an advanced course in
Omnis way back in June of 1992. However, it proved to be
impossible to limit the documentation I started out with. The fact is,
there were just too many exciting things to write about! Bjørn
Kjølseth, Managing Director of AlphaBit, felt we should enlarge the
project and make it into a book. With Bjørn’s enthusiastic support
and professional counsel, work proceeded on a growing number of
chapters. Needless to say, much of the work involved persistent
testing and programming.

With the demanding learning phase still fresh in my mind, I wanted
to write as simply and intelligibly as possible and supplement these
efforts with appropriate figures – no easy task, as it happened! The
work dragged on, but AlphaBit (Bjørn was indomitable) kept the
faith. Meanwhile a welcome guest writer came on board in the
person of Amund Haldorsen (who now has his own company in
Porsgrunn); Amund wrote the important chapter on external routines.

The 1st edition of “One Step Up” was published in Norwegian in
June, 1993. Since that time, most of the chapters have been expanded
and updated; in addition, new chapters have been added. This was
the first in-depth book to appear since Omnis 3 plus. After a major
revision, including many new figures, a 2nd Norwegian edition is
about to go to press. This 1st English edition is a translation of the
2nd Norwegian edition. Stephen Timmons has done an outstanding
job of translating the book in the style and spirit in which it was
written; he has also helped with the layout. I can’t count the number
of hours he and I have sat and worked to make sure that the content
was not only technically correct but was expressed in language that
lives and breathes.

I also want to thank Geir Fjærli for designing the cover, and for all
other help he has given to this project. Thanks are also in order for
Birger Urbye, for his assistance in the printing of the book. And a
hearty thanks to our expert on external routines, Amund Haldorsen,
for his contribution. Finally, I want to thank all those terrific people
at AlphaBit, and Bjørn in particular, for his faith in the project.

Oslo, May 4, 1994 Hallvard Lærum

Glossary

ACP (Re v1.x) Abbreviation for Application
Control Procedure. A user-defined procedure
that runs in conjunction with all active fields,
windows and menu lines within an
application, provided the ACP is activated.
See description of the ‘Set application
control procedure’ command in
“Programmer’s Reference.”

Alphanumeric Refers to all the characters that can be
written. The order in which alphanumeric
characters are arranged and numbered varies
according to the operating system. For
example: ANSI, ASCII. As a rule, numbers
(digits) come before letters. The order may
be further investigated with the function
‘chr().’

CRB Abbreviation for Current Record Buffer. The
CRB is defined as all the fields in all file
formats in an application or a format library.

LCP (Re v2.x and v3.x) Abbreviation for Library
Control Procedure. LCP functions like ACP
in v1.x, except that you may choose whether
a procedure shall apply to the entire
application or only to a library. LCP may be
set so that it is runs even when all the
windows are closed.

2 Glossary Introduction

OPT/RB Our own abbreviation for Option/Right
[mouse] Button. Where the Mac uses the
option key (marked with the symbol),
Windows uses the right mouse button. In
Omnis, you may click with OPT/RB on just
about anything.

Procedure address Every procedure may be evoked by some
other procedure by means of what we term a
“call.” However, the ‘Call procedure’
command requires an unambiguous address
for the location of the procedure in question.
This address will consist of the format name,
“/,” followed by the procedure number
within the format. The procedure address is
written below in boldface type. The
procedure name crops up automatically in
braces.

Call procedure pProcedure/3 {Do something
funny}
Call procedure mMenu/15 {Do something
nice}
Call procedure wVindow/239 {Build a list}

RSN Abbreviation for Record Sequence Number.
This field type is called “Sequence” in the
field type list in the window where the file
format fields are defined. In this book, the
acronym “RSN” is used consistently in the
name of all the sequence fields. The
sequence number fields from the various
files are kept separate by means of the first
letters in the file name. (“SEQ” is another
term used for the field name of the sequence
field; but we have stuck to “RSN” because
this is what the handbooks use.)

WCP Abbreviation for Window Control
Procedure. This is a user-defined procedure

Introduction Glossary 3

that is run in conjunction with all the active
fields in a given window, as well as when
moving between windows. WCP belongs to
the window that is front (and active) when
the ‘Set window control procedure’ com-
mand is given.

Window field A type of field that occurs in windows. I
have chosen the term “window fields”
instead of “fields” to distinguish it from
fields in file formats. Entry fields,
Pushbuttons, List fields and Popup menus
are all window fields.

Section 2: General Methods

Chapters:

1. The Planning Phase

2. Debugging

3. Layout & the User Interface

The Planning PhaseThe Planning Phase

General Considerations .. 2
Establishing priorities
Programming styles
File structure
Having the user’s best interests at heart

Evaluation of Data .. 10
Converting real-life information into file formats
Fields and variables

Comments and Labelling .. 20
Procedures
Format names
Field names

Working with Procedures.. 31
Sorting and calling procedures

2 The Planning Phase General Methods

General Considerations

Establishing priorities

After determining how the application is to be used, you should
make a list of features, taking care to distinguish between those that
must be included, those that should ideally be included, and those
that would be desirable to have. Resist the temptation to include
features that are technically impressive and offer great potential from
a programmer’s point of view but serve little or no functional
purpose; even worse, they tend to consume an inordinate amount of
time.

The list of features
Make your features list as brief as possible.
Remember, you are aiming for an integrated whole,
and every command must work – and work as
intended, even in the unlikeliest of scenarios. Listen to
those who will actually be using the product; this will
make it clear which features should head your list.
Those that wind up at the bottom of the list can – and
should – be eliminated! They can always be added
later, if the need should arise, after the application has
undergone a debugging.

Programming styles

When starting out, try to anticipate future needs, especially those you
feel sure are inevitable at some point. Although there is no denying
that foreseeing and making provision for future developments is a
mental challenge, you will simplify your task and build in safeguards
by programming with few assumptions. Take nothing for granted;
it’s your job to ensure that the parameters and settings used in each
and every procedure are just right. See the examples that follow:

• Set main file before every procedure containing commands that
are affected by main file, and after every Enter data.

General Methods The Planning Phase 3

• Set Current list first in every procedure that handles lists and after
every Enter data if the ensuing procedure lines contain commands
that handle lists.

• Assign only one function to a given variable (no matter how
insignificant).

• Keep the prerequisites for the naming of formats, the placement
of various types of procedures, etc. to a minimum.

• Program procedures or windows that can be used in a variety of
contexts – i.e., general procedures.

Few assumptions and heavy coding vss many assumptions and light
coding

This kind of approach is diametrically opposed to the
programming theory that calls for simplification
wherever possible, for the use of programming
procedures that are specifically geared to each task.
“Applied” programming is much simpler, because the
programmer is not concerned with whether a procedure
is compatible with anything other than the specific
information at hand. Most procedures, in fact, are of
this type. Nevertheless, you would do well to employ
general procedures for tasks that tend to recur but
where the context varies somewhat. For example, you
might, want to use the same window to display
different lists at different times; but such a window
will have to take into account the fact that the current
list will change.

General procedures
General procedures, being difficult to program, are
best left for the experienced developer. The whole
point of using general procedures is to save time; if
you use too much time trying to get them to work as
planned, you will defeat your purpose. And if you have
to establish a whole slew of restrictive rules in order to
get a general procedure to work (for example, rules for
naming and calling procedures), this will only
complicate further development work. It is no easy
task to fit a new feature to a set of rules formulated at
an early stage in the development process.

4 The Planning Phase General Methods

Be especially careful not to make indiscriminate use of
the Library Control Procedure or Window Control
Procedure in this way. It will only result in “stop-gap”
programming and at the very least prove hard to build
upon! It is never easy to second-guess exactly where
an application will ultimately wind up; but if you can
strike a happy medium and avoid the potential pitfalls
of both approaches, you will have succeeded ad-
mirably.

File structure

Decide on what file structure, fields and connection diagrams you
want, and then sketch them out. A general overview of the database
structure is indispensable for an effective database. Without it, you
will never get the application to work properly. If the file structure is
poorly designed, the result will be a data file that is larger than
necessary, and searches will take longer than they should.

Understanding a file structure
In Omnis, as you know, the ‘Find’ command causes a
connected record in the file (parent file) above to be
read into the CRB. Files farther up in the hierarchy are
read in manually, not automatically. The file overview
provides quick and reliable information as to when it is
necessary to locate records (manually) and the proper
way of going about it. In fact it is the key to
understanding how the application works.

Presenting a file structure
Any drawing program worth its salt can be used to
present a file structure diagramatically. Once you’ve
drawn the symbols and the various types of
connections, you can copy them and compile new file
structures with ease. The following example (see next
page) shows one way of sketching files and the con-
nections between them.

General Methods The Planning Phase 5

Hierarchical file connections
Parent files appear above child files and are connected
by a black vertical line, as shown in Figure 1.

Parent file

Child file

Fig. 1 Hierarchical connection shown by placement
and a simple
connecting line

Relational joins
The files are (preferably) on the same level and are
connected by a gray, horizontal line. In addition, a
small, black arrow points toward the file to which the
connection is being made – that is, from “many” to
“one” in a many-to-one connection.

File BFile A

Fig. 2 Relational join shown horizontally by an arrow
and a gray connecting line.

Alternatively, you can use a symbol for branched lines
that merge into one to show how the files are related.

6 The Planning Phase General Methods

The branched portion comes from “many” and leads to
“one,” as shown in Figure 3:

File BFile A

Fig. 3 Relational join shown by a branched line

Copying between files
Files that copy part of their content to another file are
indicated by a gray, thick arrow that points in the
direction of the copy. Refer to Figure 4.

File BFile A

Fig. 4 Copying between files shown by an arrow

Designing a file structure
Figure 5 shows the file structure in a hypothetical
application for a consultancy firm. The employees,
fEmployees, have consultations with their customers,
fCustomers, who belong to their respective companies,
fFirms. This sketch makes use of symbols described
above, and gives a fairly coherent picture of the
interrelationships.

General Methods The Planning Phase 7

fZipCodes fFirms

fCustomers fEmployees

fInvoices fConsul-
tations

Fig. 5 A sample file structure

Analyzing the file structure in Figure 5
Here we have an example of hierarchical connections
in three generations. The files fInvoices and
fConsultations are both connected to fCustomers,
which in turn are connected to fFirms. This means that
a regular ‘Find’ with fConsultations or fInvoices as
Main file will cause the connected record in
fCustomers to be found as well. We subsequently get
the connected record in fFirms with the aid of the
‘Load connected records (fCustomers)’ command. If
we execute a ‘Find’ with fCustomers as Main file, then
the connected record in fFirms will be found, just as
for the generation below. The relational joins inside the
diagram are between fConsultations and fInvoices and
between fFirms and fZipCodes. Many consultations
are linked to one invoice, and many firms can belong
to one postal zone. If we combine these connections,
we see that fConsultations are connected to fZipCodes
in four stages. This means, for example, that we can

8 The Planning Phase General Methods

locate all the consultations that have been made with
firms in any given postal zone. Moreover, all the in-
formation in the files between these outer points are
accessible for analysis.

When programming, we work with one file at a time,
and take into account connections to and from this file.
The file structure itself tells us how the files are
interrelated and which factors we must take into
account as we go along.

Having the user’s best interests at heart

The first rough drafts of how the windows will look, along with the
kind of aids for entering data you have in mind, are all important
considerations for the developer. Your sketches (or prototypes) will
provide a basis for determining which tools will have the desired
effect. A “defensive driving” mentality will stand you in good stead
here. Remember, for the end-user, economy of movement is all-
important. The value of minimizing the number of keystrokes and
avoiding excessive use of the mouse cannot be overestimated.
Developers, as a rule, are oblivious to the frustrations and irritation
that users feel on account of some seemingly minor failing that could
easily have been avoided but which, instead, has made registering
the 5000th patient (or customer) an irksome chore. Often the
problem is only a matter of “fine points.” The savings for the user, in
terms of time and ease of use, may seem meager when viewed in
isolation, but they add up in the long run. When all is said and done,
it is the end-user who bears the brunt of the workload where
databases are concerned.

Helping the end-user
Part of the philosophy behind providing the end-user
with a good work environment is that he or she should
not have to remain in deep concentration the whole
time. Let there be no doubt about it: every extra
reminder, every undo option, and every well-conceived
shortcut is sure to be appreciated! Omnis gives ample
scope for spoiling the end-user, but it’s up to the
developer to exploit the potential for doing so. In any
case, the developer needs to work closely with the
user. If you as a developer fail to put yourself into the

General Methods The Planning Phase 9

user’s shoes, all your window reminders and shortcuts
will not make good on their promise; in fact, the
application itself will lose much, if not all, of its use-
fulness.

The beauty of foresight
Generally speaking, the planning phase is often the
most overlooked and least emphasized of the entire
development work. And yet it is just here that you can
save yourself the most work and where the fate of the
application is most likely to be decided. An hour’s
worth of concentrated brainstorming can save you
many days worth of programming, because you will hit
upon new ideas, discover news ways of doing things,
and will be able to anticipate potential problems. When
you haven’t yet written a single line of code, changing
course is a piece of cake! Your application will also be
tidier, easier to debug, and the programming work
itself will go a lot more quickly. The crux of all your
creative and systematic mental work is careful
planning. And this is done before procedures and
variables enter the picture and complicate matters.
From this point on, it’s smooth sailing all the way –
until something totally unexpected crops up –
something that could also have been avoided with
careful planning!

qCHhcq
You program better when you keep

 the big picture before your mind’s eye.

qCcq

10 The Planning Phase General Methods

Evaluation of Data

Converting real-life information into file formats

Part of your job as a developer is to evaluate how real-life infor-
mation can be translated into file formats in such a way that if forms
a systematic whole. This is often easier said than done. You need to
determine which bits of information can be put together to form a
whole, with as little redundancy as possible. If the same names or
postal zones keep cropping up in separate records within a file, this
indicates that some of the fields should have been taken out and
placed in connected files of their own. Wherever several distinct bits
of one type of information can be joined with one particular bit of
another type of information (and where these recur in the data) these
can all be put in their own separate files and linked. Repeat this to
yourself 20 times, or read the example that follows.

Example of many connections
There are 20 counties in Norway, each of which is
subdivided into municipalities. In each municipality
there are a certain number of medical clinics, each with
a certain number of doctors with their respective
patients. The patients have all visited their doctor more
than once and have had different kinds of examinations
during each visit. Working upwards from the bottom,
the files could be connected like this: Individual
examinations – Consultation – Patient – Doctor –
Medical clinic – Municipality – County, with one file
for each generation. “Individual examinations” would
be the child file, and “County” would be the great-
great-great-great-grandparent file. Each file represents
a unit in which the fields in each file are closely related
in some meaningful way. If we had collected all the
fields into a single file, we would then have had to
store the name of the county (which belongs at the top)
together with every single examination the patient had
undergone from his doctor. The result would be reams
of the same information copied over and over again.
All the hierarchical levels above “individual

General Methods The Planning Phase 11

examinations” would expand exponentially, and the
whole country would soon be awash in data!

File connections
Besides saving space on the hard disk, connections
provide complete structural flexibility. An unlimited
number of records in the child file can be connected to
a specific record in the parent file; the same thing
applies to each generation upwards. This makes it
fairly easy to enter all kinds of information of varying
types and amounts. Connections also give broad scope
to the database engine in Omnis for manipulating data
in searches, for statistics, and for the generating of re-
ports. Information stored in the form of connections is
more accessible for computers, generally speaking.
Connections also facilitate the creation of indexes,
which can be searched rapidly. Only human beings are
going to understand free text anyway.

Should I put all the fields in one file?
On the other hand, there’s no denying the fact that
searching for small bits of information spread out over
many different kinds of connected files takes more
time than retrieving one record in one giant file, in one
quick go. If, for example, you know with certainty how
many or which examinations a given doctor carries out
in the course of a consultation, the smart thing to do
would be to put this information into separate fields.
This will speed things up. However, if the doctor were
to do an additional examination, there would be no
place to record it. It’s all a question of weighing losses
and gains. Any information about the user’s situation
can simplify the programming dramatically, but only if
it is reliable.

Coping with file connections
You needn’t be afraid of programming with
connections, provided you have a clear grasp of the file
structure. Hierarchical connections require you to think
in terms of generations in twos, whereas relational
joins require the active intervention of the developer

12 The Planning Phase General Methods

when connecting or locating records. A sensible anal-
ysis of the data will tell you where connections are
called for and where they are unnecessary. Some
developers tend to connect every file to every other
file, but that’s rarely advisable. It usually results in
madcap file structures that are in total disarray; it will
also overload your computer (think of all those indexes
that will have to be maintained!). Similarly, your
procedures will in all likelihood be disordered and hard
to interpret.

Indexes
Indexes are meant to help the database find its way in
the data file. To all intents and purposes, an index is an
internal tree structure; however, we may think of an
index as a list that contains the RSN (Record Sequence
Number) for all the records in a file when the content
of the indexed field is sorted alphabetically
(alphanumerically). This list is the database version of
a table of contents. There is one for every field that is
indexed. When a record is added, the RSN is inserted
in various places throughout the index lists, depending
on where the content of each index fits. Indexes are
used in sorting, doing searches, and in the generating
of reports. Index searches are extremely rapid, because
binary searches are used (more on this subject later).

Too many indexes
The misuse of indexes is a fairly common sin among
developers, one that often leads to the maintaining of
index lists that are never actually used. A moment’s
reflection is usually all it takes to realize which fields
are realistic candidates for a search. You can also do
searches of fields that are not indexed, but for
voluminous files this is time-consuming. In version 1.x
of Omnis 7, there is a limit of 12 indexed fields per
file. With a view to enlarging the application at a later
date, it is important to use your quota sparingly so that
you don’t run out of indexes just when you need them
most.

General Methods The Planning Phase 13

Boolean indexes
If you are running short on indexes, it is useful to
know that Boolean fields are generally the least
auspicious candidates for indexing. If you cannot avoid
sacrificing one of the existing indexes in a file format,
Boolean fields should be the first to go. This is
especially true if the field has only two possible values
(for example, man/woman), distributed among as
many records. In such cases there is little to be gained
by indexing.

In version 2.x you can have an unlimited number of
indexes, so the problem is not as acute. Nevertheless,
you should choose indexes with care, because if you
have defined too many, it can take time to build them
up.

Non-indexed fields
Analyzing non-indexed fields and doing searches on
them can be carried out with the aid of reports, because
the user must wait a while for the printout anyway.
Users are usually more patient with reports, because
many calculations are performed and often presented
here at the same time. Thus the time spent in waiting is
less tiresome than waiting for active feedback
concerning some bit of information within a window.

TIP: The essential thing is to acquire as much reliable information
as possible concerning the amount, type and distribution of
the data. Assumptions are never more than just that –
assumptions, a fact that must be taken into account during the
programming by building into the application the potential for
expansion and variation.

Amount per unit
There can be a set amount of information per sorting
unit (file) in the material gathered during street polls.

14 The Planning Phase General Methods

The questions on the questionnaire do not change. For
every question there will be a reply that must be
entered. There is no need for file connections, because
no schematic variations are anticipated. Each question
is simply entered as a separate field in the file format.
In an application of this type we can, theoretically,
make do with just one file.

(It is customary, however, to facilitate the entry of data
from such polls by recording the answers as selections
from among a fixed set of possible replies. This
enables us to add up identical answers and present the
results statistically.)

Type of data
The type of data is a key component of the file
structure. The field definitions are directly determined
by the type of data. Time and date belong in one of the
variants of the date field. Numbers and values with
different decimal places and digits are placed in a
number field that has the correct number of decimal
places and a digital capacity with plenty of slack.
Completely dissimilar free text is put into a regular text
field with an ample surplus of the number of characters
allowed. You should preferably use the maximum
number of characters, since it will not affect the
demands on memory. Knowing what the various field
types represent and how they function is a prerequisite
for utilizing them effectively. The fruit of choosing
your field types wisely is simpler programming, rapid
searches, and optimal use of your storage medium.

Distribution
How data is distributed determines the degree of
standardization. The more dissimilar the information,
the harder it is to sort it into fixed categories. This
applies to text in particular. The most common method
of translating text into number code consists of turning
“woolly,” free-text descriptions into clear choices from
a pre-existing list of alternatives. Computers can cope
with numbers and code; but when it comes to prose,
they are illiterate.

General Methods The Planning Phase 15

“Dynamic” versus “historical” data entry
When two files are connected to each other, they are
usually dynamically linked. In the case of customers
that are connected to a firm, all the customers will be
updated if, for example, the firm changes its name. So
the information on all the customers gets updated all at
once, thus tempering the confusion that a change of
name might bring. The relationship between the files is
seen to be a dynamic one.

We do not invariably want the data to change in this
way, however. A typical example is the registration of
accounts and sales. If a product is sold at a set price,
then the price does indeed remain “set,” regardless of
whether the actual price changes later. We may call
this kind of data entry “historical.” Its purpose is to
keep information unchanged. So information on price,
type of product, and time of sale must not be separated.
Their integrity can best be ensured by putting them in
the same file. The price and type of product are usually
taken from a price list; but if all the relevant
information is to be preserved, these two factors must
be stored together with the time of sale. In other words,
we need to copy information from one file to another.

qCHhcq
To fully exploit the potential of the database,

we must closely analyze the data in its entirety.

qCcq

Fields and variables

After a careful planning phase, defining fields in the file formats is a
breeze. Your attractive list of fields, neatly arranged in logical order,
may well leave an indelible impression of total control and
benevolent perfectionism. However, the order of arrangement and

16 The Planning Phase General Methods

the presence of any empty fields in the file definition is wholly
immaterial. Your computer doesn’t give a hoot about which fields
appear where, because they are referred to by their respective
numbers. The end-user never sees the field list as it appears in the
file format. It is not necessary to exchange one field for another, or to
change the order of arrangement; that only makes for busywork. But
you may fill in any empty fields.

General Methods The Planning Phase 17

Deleting a field in the file format
If you delete a field, procedures that refer to this field
will show ‘#???’ in place of the old field name. The
procedure “forgets” what the actual field was, because
its related token has been removed. If at some later
date you enter a new name on the same line in the file
format (after doing other things), it will not show up
later in the relevant places with ‘#???.’ You will have
to insert the missing field name yourself. If, on the
other hand, you are merely altering an existing field
name, the new name will show up wherever reference
is made to the field in the normal way. Indirect
references to fields (for example with the aid of the
‘fId’ function and a text variable) will in any case have
to be recovered by the use of ‘Find and Replace’ – or
be edited manually.

Is memory a problem?
A roomy definition of fields has no bearing per se on
how much space is taken up on the hard disk and in the
internal memory. Only when they are filled with data
do fields take up space, whatever amount the data
requires. If there are many fields and variables in
circulation, they will consume memory as they are
used in the various procedures. Fields retain their
content until the latter is actively deleted (for example,
during certain calculations or unsuccessful searches).
Lists, as you might expect, are the most crucial factor.
A developer with a boundless zeal for definitions and
an insatiable appetite for endless lists might well run
into memory problems; otherwise there is little cause
for worry. Just delete the longest lists after use.

The Sequence field (RSN)
A sequence field is actually just a concrete realization
of Record Sequence Number for the user, as this
number always exists in memory. The sequence
number is very handy, since it is the “physical” link
between parents and children in a hierarchical
connection. Moreover, it is a sure means of identifying
each individual record (or separating them from each
other, even if they should happen to be very similar). It

18 The Planning Phase General Methods

pays to make a habit of defining a sequence number
for each file format. It is sure to prove useful.

User-designed variables versus hash (#) variables
The 60 global number variables that come with Omnis
should prove useful in many situations. For example,
they are admirably suited as log variables in loops with
a certain number of rounds, and for use in intermediate
calculations. They tell us nothing, however, about what
they are used for. As a result, they will gum up the
procedure and mangle it beyond recognition. Not only
that, the procedure will soon be swarming with errors.
It is also risky to entrust them with vital information,
e.g. flag, current status, etc., because it is so easy to
lose track of which ones contain what and of which
variables are already in use. The more hints the
developer gives himself about what is actually taking
place in the procedure, the less there will be to
remember all at once, and the development work will
be less taxing and more rewarding.

Where to use hash variables
There is one area in particular in which hash variables
are unexcelled, and that is when values are being
transferred from one application to another. When an
application with its own file formats and its own data
files is opened in Omnis, all the information from the
old application is, not surprisingly, no longer available.
For this reason, Memory Only files cannot be used for
this kind of task. The hash variables are not deleted
until you leave Omnis completely. Accordingly, they
are well-suited as temporary storage areas during the
transition from one application to another. The #-lists
are especially useful in this regard, because they can
contain information from all kinds of fields and behave
much like an ordinary data file.

Variable file
For many tasks you need your own variables. These
can be defined in a separate variable file, set to
Memory Only. The fields in the file will be global

General Methods The Planning Phase 19

variables, and you may assign them descriptive names.
For years now, Pascal and C developers have made a
careful distinction between global and local variables,
primarily with a view to conserving memory.
Nowadays, with memory-hungry operating systems
such as Windows and System 7, computers are usually
configured with such an abundance of internal memory
that we no longer need to ration memory. There is
more than enough room for any global variables you
might want to define. Moreover, with one variable for
each task, we can be certain that all the variables
contain what we expect them to, and the procedures
that employ them will soon be error-free and reliable.

There are two tasks for which variable files are
particularly well-suited; one is date variables. Hash
variables don’t contain date variables. That’s a pity,
because date variables are quite useful, especially for
searches and reports. Search formats designed to be
used with date fields will be more manageable if you
make comparisons with a date variable instead of a
number variable. In addition, the presence of a date
variable in an entry field will cause Omnis to check the
validity automatically – i.e. whether what is being
typed in can be interpreted as a date. The other task
involves display lists. You should declare any lists that
are going to be on display in a window. Doing so will
make it much easier to remember each list’s function.

Library variables
In v2.x, you can define library variables, which can be
used in place of Memory Only files as explained
above. You would do well, however, to have the
definitions gathered in one place (in one procedure);
this will save you from having to look for them later.

Local variables and format variables
For complicated procedures it is a great help to be able
to use local variables for all intermediate calculations
and constants. With smart labelling, the procedure will
be as well-arranged as it can possibly be, and the
difference will certainly be noticeable! The various

20 The Planning Phase General Methods

procedure lines reveal their functions relatively clearly
(which is not the case when hash variables are used).
Even debugging is made much easier, because the user
will not have to remember the function of, say, 15–20
hash variables. If variables are to be used elsewhere in
the menu or the window, the developer will have to
resort to format variables. Variables that are used in
procedures and presented in reports must be global.
(See also the chapter entitled “Data Structure in
Memory & Hard
 Disk.”)

qCHhcq
Use your own variables – each with its own

unique function.

qCcq

General Methods The Planning Phase 21

Comments and Labelling

Procedures

It is not always clear what a given procedure is all about. Only after
following the logical drift of the commands and learning what the
different variables represent (and what they contain) will you be able
to understand the process. Care in labelling coupled with a good
memory will spare you a lot of work at virtually every stage of the
development.

Comments
In procedures it is good strategy to write comments
between the commands (but don’t write a whole
book!). Not everything needs explaining, especially if
you are using your own variables. The important thing
is to make a note of what you intend to do with the
procedure, and perhaps make use of comments
between the different “paragraphs.” Brief but import-
ant points (for example, assumptions about format
names and the limitations of a procedure, etc.) can be
made in the form of comments in fixed places, e.g.
procedure line 0.

TIP: The names of variables, formats, etc. written in the comment
lines can be used to bring up the function menu (OPT/RB).
This is a quick and handy way to obtain “active” fields in a
procedure.

22 The Planning Phase General Methods

Fig. 6 Using comment lines to access information about a field

Naming a procedure
Finding good names for procedures is a real headache
but well worth the effort, since good names can clarify
an application markedly. Procedures often wind up
doing more than they were originally intended to do,
and incomplete and ambiguous names then become a
major problem. Nevertheless, the question remains:
How do you sum up an entire procedure in one brief
sentence? Though personal preferences will always
vary, every developer should strive to avoid
superfluous phrases, at the very least. Short words are
obviously preferable to whole phrases, and you can use
incomplete sentences. But be careful with
abbreviations. If someone else ever has to look at your
application, all your so-called “self-explanatory”
abbreviations will become a nightmare. Not only that,
developers have been known to forget their own
abbreviations!

Naming subprocedures before they are programmed
If you are in the habit of calling many small
procedures from a main procedure, the logical thing
would be to apply names to subprocedures before you
start programming, which will break down your task
into natural sections. This, in turn, will direct your
programming in a natural way. This means, of course,
that you will have to think through the entire procedure
beforehand. A real chore, to be sure; but more often

General Methods The Planning Phase 23

than not it will result in better code. A certain amount
of mental effort has got to be expended anyway; it
might as well be sooner than later.

The numbering of procedures
Most applications wind up with a whole lot of main
procedures and subprocedures. Programming is
anything but a streamlined process! The procedure lists
often exemplify this fact: the procedures appear helter
skelter, in no apparent order. The titles don't always
help us see which procedures and subprocedures
belong together, because we only see the first 15–20
letters. Numbering the procedures goes a long way to-
ward helping us find our way in a procedure list. For
my own part, I usually use capital letters to signify
main procedures, and begin with the letter A (within
each format). I let the bullet symbol separate this
capital letter from the rest of the main procedure title,
as follows:

A•Monthly Accounts

The bullet symbol signifies that what follows is a main
procedure. Each new main procedure is assigned a new
letter (e.g. B, C, etc.). When you reach the end of the
alphabet, begin again with double letters, like this: AA,
AB, AC, etc.

The numbering of subprocedures
The following subprocedures are numbered
consecutively: A1, A2, etc. Subprocedures don’t need
to be numbered correctly in terms of how they appear
in the main procedure. The initial letters are separated
from the procedure title by a period, as follows:

A1.Build FoLs_MonthAccount

Here we see the difference between main procedures
and subprocedures, as well as where the various
subprocedures belong. In other words, it is perfectly
acceptable for procedures to lie strewn all about, as it
were; that doesn’t have to mean that we are going to

24 The Planning Phase General Methods

lose track of which procedures belong where. If there
should be a need for sub-subprocedures (under
subprocedures), number them with a lower case letter
directly after the number of the mother procedure, as
follows:

A1a.Get period

Still deeper levels can be indicated by alternating
numbers and letters in each level, to keep them
separate from each other.

Special characters and symbols in the procedure titles
Certain symbols, besides their use in numbering, can
also suggest something of the content and nature of the
procedure. Hidden away in the standard system fonts
in both Macs and Windows machines are a variety of
symbols that are suitable for this purpose. What is
important here is that the developer choose his own
symbols, so that he won’t forget them. A little time and
trouble here will reward you with a powerful and
flexible system for the naming of procedures. It will
also result in tidier applications and simpler
debugging.

“Registered trademark” – This symbol can be
used to indicate a resource procedure that is called
by many different procedures.

“Paragraph” – This symbol can mean that the
procedure has parameters and gives a return value.
(Remember that this symbol customarily
designates the RETURN Key in most word
processors.)

It is useful to know whether a procedure contains
Redraw windows or not, especially when it is
being used as a resource procedure. The letter “r”
can be used to indicate that the procedure does
contain a ‘Redraw windows’ command.

“System” symbol (in the Geneva font, size 10 pt.)
can be used to designate distinct procedures, e.g.

General Methods The Planning Phase 25

collections of format variables, the Window
Control Procedure, etc. For that matter, you may
use any symbol you like, as long as it stands out in
some way.

Fig. 7 Some of the naming conventions

“Cleaning up” procedures
Endless lists of procedure titles can be a chaotic sight.
It is tempting to try to tidy them up by getting those
that belong together to appear in logical sequence, and
by separating different portions of procedures with
blank lines. The first thing that happens if you do this
is that the calls no longer work. You will wind up
having to correct a number of ‘Call procedure’ com-
mands before the application will work again. Not only
that, it is often far from clear just where the different
subprocedures belong when there is more than one
procedure that calls them. All this makes for a lot of
unproductive work. Collections of procedures will
never be as tidy and well-laid-out as we’d like – nor do
they need to be. Just try to keep procedures that belong
together in the same general vicinity, and use a
numbering system that you feel comfortable with.

Format names

26 The Planning Phase General Methods

All formats must have their own special name; but, unlike fields,
they may always contain both upper and lower case letters. When
windows are created automatically on the basis of file formats, the
name “W_,” followed by a file name, will be suggested. It’s not a
bad idea to let a letter designate the format type and put it first in the
format name. Naming in fields is an analog process. Capital letters,
however, are harder to read than lower case letters. In this case, the
letter “W” does not represent vital information, so we can just as
well use a lower case letter. Instead of using an underline character
as a separator, we have chosen to put a capital letter first in the part
of the name that follows, which gives us a net savings of one
character, as follows:

wEmployees, fEmployees, rEmployees

Prefixes for format names
We suggest the following prefixes for the different
format names:

m… menus that will be installed
hm… hierarchical submenus
pum… pop-up menus
p… menus used for procedure collections
w… windows
iw… import windows
f… files
r…reports
s… search formats

The names of search formats
Finding good names for search formats is fiendishly
difficult. If you insert all the search format conditions
in the name, the result will be too long:

sField1EqField2_Field3greaterthan12_Field4lessthan99

A compromise solution would entail inserting only the
field names:

sField1Field2Field3

General Methods The Planning Phase 27

You can also try assigning a name that describes the
purpose of the search:

sFindCustomersInFirm

One of the biggest problems with this last method is
that the name will often be an inept description of what
the search actually performs; in addition, many names
will tend to resemble each other too closely, and this
could cause confusion. So the developer is left to
brood and ultimately hit upon an appropriate name that
is unique – and that’ s hard!

Should we reuse the search formats?
The whole point of assigning descriptive names is to
enable us to reuse them in other situations. However,
you should ask yourself the following: Is this really
necessary? Search formats don’t take up much room,
and you can construct them in no time at all. As a rule,
it takes less time to come up with new search formats
than it does to agonize your way to a “good” name.
The only requirement is that search formats must be
identifiable by name. Therefore, you might just as well
assign them a name according to the procedure
address, and then number them consecutively within
the procedure, as follows:

spProcedures5_1, spProcedures5_2, spProcedures5_3
swEmployees497_1, swEmployees497_2

The disadvantage of this method is that the names do
not tell us anything about the content – which means
that we’re not out of the woods yet.

Field names

Make a habit of assigning good field names. The more the name tells
us about what the field is used for, the better it is. From time to time
you will find yourself wishing you had an entire sentence at your
disposal to do it justice. Until version 1.1 of Omnis 7, the limit for
field names was 15 letters. In ‘Mixed Case/Long Fieldnames’ mode

28 The Planning Phase General Methods

we now have 255 letters at our disposal. That’s all well and good, but
the longer the field name, the longer the procedure lines. Screen
space is not limitless, either. (Moreover, developers hate scrolling
with a purple passion!) It pays to be as concise as possible and still
convey the purpose of the field.

Non-unique field names
No two fields may have the same name. In addition,
the developer needs to know which file format a given
field belongs to. If the ‘Unique Field Names’ option in
‘Preferences’ has not been checked off, Omnis
resolves the problem by putting the file format name
together with the field name, as follows:
fFilename.Fieldname. This quickly leads to lengthy,
ponderous calculations.

Unique field names
If you want to have short field names in your
procedures, you should allow ‘Unique Field Names’ to
be checked off. It will then be up to you to see to it that
no two field names are the same. But this can be
achieved by using the first letter (or first two letters) in
the file format that are nearest the beginning of the
field name; this will show us which file format the
fields belong to. Unfortunately, such letter codes tend
to make the whole field name cryptic or even render it
unintelligible, unless they are separated from the rest
of the name in some way or other. A space character
cannot be used, but an underscore is permitted. Should
a field name be typed in that contains a space
character, this space character, as you probably know,
will automatically be replaced by an underscore. In
‘Mixed Case/Long Fieldnames’ mode we can separate
the abbreviation for the file format name from the rest
of the field name by simply writing the code in lower
case letters and the remainder of the name in upper
case – or vice versa.

It’s usually not all that difficult to remember which file
formats had which prefixes in their respective fields.
Don’t forget, you can always view the file formats and

General Methods The Planning Phase 29

their fields in the List Field Names window, which can
be brought up with CMND-9 or F9.

Abbreviations
After the separator, you must do your best to
abbreviate as much as possible and still retain all the
relevant information in the name. Eliminate
superfluous or obvious information, e.g. “file,” “field,”
etc. You will forget abbreviations that are too short or
too numerous; and any fields that the developer
doesn’t recognize are a major hazard! Consequently,
you should try to settle on a set of standard
abbreviations and stick to them; make a point of noting
them down somewhere in the application. When
dissimilar abbreviations are combined in a name, they
should be separated visually, otherwise you won’t be
able to make head nor tails of the names during a
future revision of the application. This is all the more
true if others will be looking at your application.

Example
Let’s try to abbreviate a really long field name. The
unabbreviated field name reads as follows:

‘The_name_of_the_dog_who_belongs_to_the_boss’s_wife_in_the_co
mpany’

This field belongs to the file format fCompany. The
abbreviated field name could be something like the
following:

Upper Case: CO_DOG_WIFE_BOSS
CO_DOGWIFEBOSS (under

doubt)
Mixed Case: CoDogWifeBoss

CoDogWfBs
CO_DogWfBs
Co_DogWfBs

30 The Planning Phase General Methods

The names of variables
Strictly speaking, you don’t have to include the
designation of the file name where the name of the
variables in Memory Only files is concerned, because
variables are usually collected in the same file. In this
respect they are like local, format and library variables,
which are all placed in their respective internal Omnis
files. Nevertheless, it is important to distinguish be-
tween them, especially if the same names are used
repeatedly (for example, in local and global variables).

General Methods The Planning Phase 31

We suggest the following prefixes:

me… Fields in Memory Only files
gl… Fields in Memory Only files (alternative

prefix, abbreviation of “global”)
li… Library variables
fo… Format variables
lo… Local variables
pa… Parameters

The names of lists
Unfortunately, Omnis does not check to see whether
you are giving a list in clear-cut list commands such as
‘Set current list.’ Lists are very specific types of fields,
and you would be wise to mark them clearly. We
suggest you mark them as follows:

(prefix)…Ls… Mixed case
(prefix)…LS_ Non-mixed case

Examples, mixed case:

glLs_Companies
liLs_Companies
loLs_Customers
CoLs_Employees (File format fCompany)
DnLs_Notes (File format fDevelopersNotes)

Examples, non-mixed case:

GLLS_COMPANIES
LILS_COMPANIES
LOLS_CUSTOMERS
COLS_EMPLOYEES (File format fCompany)
DNLS_NOTES (File format fDevelopersNotes)

32 The Planning Phase General Methods

The names of Boolean variables
Boolean variables are often used as flags, switches, etc.
Like lists, they stand out in some way or other. You
may, if you wish, mark them in some special way,
which means you won’t have to use up characters in
the field name for words such as “Flag,” “Switch,”
etc., which are actually superfluous. See below:

(prefix)…Bo… Mixed case
(prefix)…BO_ Non-mixed case

Conclusion
Some might think it pedantic of us to focus so
intensely on the naming of fields and variables. But in
fact, field names permeate the entire application, in
every conceivable situation that might arise for the
developer. Developers will do themselves a big favor
by taking the creation of names seriously. It’s all really
just a matter of employing a few simple tools.

If you can remember the names of all the fields in all
the files, this is a clear indication of excellent naming.
This is a big advantage when it comes to putting fields
in calculations, among other things, because typing in
the field names manually is much quicker than using
the List field names window (CMND-9 or F9) – if the
developer is a skilled typist.

TIP: If you type in the first letters – just enough to fit one
particular field name – Omnis will fill in the rest
automatically. If the same letters fit more than one field name,
the developer must select one of them from a list that appears.
(This does not apply to calculations.) The entire naming
system presented above is based on the assumption that it
should be easy to remember the first couple of letters.

General Methods The Planning Phase 33

Working with Procedures

Sorting and calling procedures

The placement of procedures is often a reflection of individual taste,
perceptions and personal bias. The choice is usually between placing
them in a window’s procedure list or in their own menus. We suggest
that you create “procedure” menus. These menus will never be
installed, but the procedures are called from the field procedures in
windows. The result is a readily accessible library of procedures. It
will be easy to use the same procedure more than once. You will
avoid the calling problems that arise when field numbers (and hence
the procedure “addresses”) are altered, because this is unnecessary in
procedure collections of this kind.

Calling procedures within window formats in v1.x
It is perfectly permissible to call procedures created in
windows. However, such procedures, unless they
belong to the window you are editing, will not appear
in the procedure list when you type in the ‘Call
procedure’ command in v1.x. You will have to
remember the procedure address yourself. Editing
procedures is also not as feasible here because the
developer must locate the window format before the
corresponding procedures. But there is a shortcut: use
OPT/RB on the window format name. The command
‘Modify procedures’ will appear in the popup menu.

Calling procedures within window formats in v2.x
In v2.x, window procedures are dealt with on more or
less equal terms with menu procedures, so we do not
run into problems the same way here. Either way, if
you place procedures to be called in window formats,
it’s a good idea to place them at the bottom of the
procedure list starting from Procedure 500 and
working your way “upward.” This way the procedures
are guaranteed to be in the safest possible location
within a window format.

34 The Planning Phase General Methods

Large procedure collections
It’s also possible to place all the procedures in a single
procedure menu, but then one level of sorting
disappears. This makes for a lot of scrolling.
Moreover, 99 procedures (the maximum number
allowable in v1.x) are often insufficient for an entire
application. Even 500 may be too few, in which case
we’ll have to use more than one collection. We are
then forced to search in a number of procedure
collections, mostly by trial and error. The laborious job
of reading through pProcedure1, pProcedure2, etc. is
not exactly a barrel of laughs; nor is having to scroll
through 500-odd procedures, for that matter!

Subdividing and calling
An important principle in the programming of heavy
procedures is to subdivide them, or break them down
into several small subprocedures which are called from
the main procedure. This keeps the main procedure
brief and it gives us a clear overall picture of what is
happening in the procedure. The specific
subprocedures can often be called from other main
procedures. The most important advantage, however, is
the general view this form of organization provides
and the positive effect it has on the debugging. The
subdivisions tell us a lot about where the error lies. We
won’t need to use as much mental effort during the
initial programming phase, because we’ll be able to
concentrate on one thing at a time. In this way we can
test small functions with few variables and parameters,
and even the tests themselves will be easier.

General Methods The Planning Phase 35

Fig. 8 An unduly long procedure on the left, and the
same procedure subdivided and organized on
the right

Cardinal rules

• Long procedures make for heavy reading.

• Long procedures tend to be error-ridden.

• Long procedures are not very nice-looking.

• Long procedures are definitely not good for your
heart!

• No procedure is so special that it can’t fit in
somewhere or other and be reused (or so they say).

The subdivision of long procedures calls for a fairly
good system for sorting and finding them later. It is up
to the developer to determine how the procedures are
to be kept separate; but the most important thing is to
choose a system and stick to it.

36 The Planning Phase General Methods

Sequential calls
We have sequential calls when one procedure triggers
another, which in turn triggers yet another, etc. If one
of the procedures in such a row is run, the procedures
that follow will also run, whether you want them to or
not. Do your best to avoid calls within procedures
which are themselves called, so that the Procedure
stack can remain as small as possible. (See the chapter
entitled “Sequence of Procedures.”)

qCHhcq
Debugging cluttered applications is like trying to

catch butterflies
with a fly swatter – in rainy weather, no less!

qCcq

Layout of the procedures

Procedures will be easier to read if we insert blank lines between
dissimilar subtasks in the procedure. These have only a visual effect.
The comment lines can be filled with just about anything when you
want to highlight an important point; but remember: these lines can
contribute to a cluttered and mushy appearance if they are overused.
In v2.x, however, we can put the comments in the same line as the
commands. Here they won’t disturb things much, and you may use
them to your heart’s content. In Figure 9 we have a quasi statistical
comparison that most people would agree on:

General Methods The Planning Phase 37

Number of comment lines
in a procedure

“Clarity in the procedure”

Number of lines
in a procedure

Number of bugs,
loss of clarity,
number of problems…

Fig. 9 Tidiness – the statistical kind , that is!

DebuggingDebugging

General Considerations .. 2
The plague of bugs
Avoiding errors
Testing procedures
Lengthy procedures
Types of errors
Localization
Logical errors
The datafile

Window or Procedure?.. 11
How the Procedure Window Is Built Up ... 13
Finding the Right Procedure.. 14
Manipulating the Way Procedures Are Run... 16

Manual control using “Run pointers”
Manual control using “Run modes”
Conditional stops

Viewing and Altering the Values of Variables and Fields 25
Option/Right-hand Mouse Button (Opt/RB) menu
The Field Value window
The Field Value window for lists
The Active Fields List window

Examining the Sequence of Procedures.. 29
Trace all procedures 29
The Trace log
OK messages
Viewing the Procedure stack directly

Finding Clutter in the Application.. 32
Buttons in the ‘Find and Replace’ dialog box
Setting the criteria for the search

Debugging in Multi-user Mode ... 35
In Conclusion.. 36

2 Debugging General methods

General Considerations

The plague of bugs

Debugging is both boring and demanding. Not many developers
have the stomach for correcting problems that crop up unexpectedly
when “everything was supposed to be in order.” Depending on the
way we work, this process can make such great demands on our
personal memory, sense of logic, and ability to juggle multiple
elements that even the best of us often have to throw in the towel. In
fact, this is why some applications are never finished. Failure to
settle on a suitable approach at the outset is a sure-fire recipe for
frustration. First we’ll take a look at a very general way of tackling
the problem, then consider some examples of practical techniques;
and then we’ll study the debugger itself in detail.

Avoiding errors

The simplest (and smartest) thing to do is avoid making errors in the
first place. This requires a meticulous, somewhat sedate style of
programming, which will not be to every developer’s taste. Be that
as it may, “quick and dirty” programming is sure to create problems;
and in any case, debugging is the most time-consuming process of
all. So our guidelines for avoiding errors are simply a matter of good
programming habits:

• Aim for good labelling and good field names.

• Let each field and each variable have only one task each.

• Take the time and trouble to make the structure of the application
lucid and sensible.

• Don’t stop until you’re sure the procedures are well-organized.

• Avoid long procedures; break them up into subprocedures
wherever possible.

• Do not continue until every subprocedure has been tested.

• Do your utmost to anticipate every conceivable situation that a
given procedure could encounter.

General Methods Debugging 3

Testing procedures

Continual testing at every stage is an indispensable part of a
developer’s work. This is particularly true of “new” procedures that
the developer has not keyed in a hundred times before. Testing is the
only way to mitigate the effects of Murphy’s laws, from which no
programmers are exempt. (Murphy’s first law states: “If something
can go wrong, it will – and when it’s least expected and most incon-
venient!”)

Manipulating field values
In theory, the correct way to go about testing is to set
the variables in use to known values and see whether
you get the desired results when the procedure has
finished running. We can use the OPT/RB menu to
assign the values and to view them. If there are many
variables to check, we can view them all at once in the
Values list if the fields belong to the same file (via the
‘File format’ submenu in the OPT/RB menu.) You can
also set the fields to be active and follow them in the
Active Fields List as you step through the procedure.
(More on this later.)

Fig. 1 The Option/Mouse Right-hand Button menu,
abbreviated as the “OPT/RB” menu.

4 Debugging General methods

Lengthy procedures

Most procedures will contain a number of small, specific tasks that
should be tested individually. The procedures must be run in
segments, which you can do with the aid of the debugger. ‘One time
breakpoint’ is useful here. It stops the procedure at the desired place
and automatically disappears when the Go point passes. Regular
Breakpoints placed in the margin are also acceptable. All of them
can be deleted at the same time via ‘Clear Breakpoints’ in the
‘Breakpoints’ menu. But on the whole, your choice of method will
be a matter of taste; in any case, there are options galore.

Thoroughly familiarize yourself with the debugger; you won’t regret
it. The debugger allows for ample opportunity to test-as-you-go
while you are inputting a procedure. Variables are dealt with at each
stop, and it will be a relatively simple matter to correct any errors
you uncover along the way. Errors are never as easy to catch as when
you are inputting a procedure for the first time. All it takes is a little
patience.

Types of errors

You will come across many types of errors as you go along. Some
are due to a misguided use of commands. For the most part, Omnis
will point these out, and they are fairly easy to correct. Other types,
on the other hand, are the products of a fatal weakness in a
procedure’s logical structure and are much harder to eliminate. But
the worst that can happen is that a procedure does not perform the
task for which it was intended, with the cause being that a certain
command is not behaving quite as you expected. The procedure
appears to be sound, and yet things still go wrong. So it is absolutely
essential that you make sure that you know how every single
procedure command actually works (and not just read a little and
guess your way to the rest). In the paragraphs that follow, we will
consider a general approach to eliminating most kinds of errors.

General Methods Debugging 5

Localization

In all debugging, the first step, before you find out why something
went wrong, is to find out where it went wrong. Usually, you already
know what went wrong. (If not, then this is the first thing you need
to find out.) Localization consists of zeroing in on an error. If your
application is neatly sorted, finding the relevant procedure will not
take long. The more you can narrow down the “list of culprits,” the
fewer procedure lines there will be to comb, and the easier the de-
bugging process will be. Everything hinges on how good the labeling
is.

Logical errors

When the procedures run without protest from Omnis and the results
are still not what you expected, logical errors are to blame. After a
thoroughgoing localization, you may proceed as follows:

Has the test been carried out properly, and are your expectations
rooted in reality?

It sometimes happens that a test appears to go smoothly and yet turns
out to be the root of the problem. Not all developers appreciate what
a chore it can be to run a proper test. Many factors and variables
must be taken into account when attempting to produce a very
specific situation in a somewhat cumbersome way. So just be
patient! Learn to value the information a good test can provide and
don’t begrudge yourself the time it takes.

Can the procedure be made clearer or broken down into
subprocedures?

A little tidying up can go a long way; the work involved will not
make great mental demands on you, and it can work wonders. You
should not continue until you feel that you are in full control of what
happens where. If you often find yourself tidying up procedures, you
should probably be asking yourself if your programming style isn’t
becoming “quick and dirty.”

Is the general structure right?

6 Debugging General methods

Who can’t see the forest for the trees? Before you check out the
procedure lines themselves, you had better check the bigger lines. In
‘If’/’Else if’ systems with many levels and a slew of ‘End If’s at the
end, it is all too easy to assign certain parts of the procedure to the
wrong level or put them in the wrong place. ‘Repeat’ or ‘While’
loops within loops will result in the same problem. Step back and see
whether this is where the error lies. If the procedure is too lengthy to
be viewed all at once, break it down into subprocedures and insert
calls at appropriate places!

Procedure calls
Of course, it’s possible to botch the calls as well. Be
especially on your guard in situations where a
“resource procedure” has been moved or deleted.
There is always one more procedure that calls it.
However, the procedure name of the subprocedure in
‘Call procedure pProcedures/3 {Procedure name}’
clearly shows whether the call has been wrongly
placed. It’s easy to spot errors of this type.

Missing or moved subprocedures
Subprocedures that are deleted can cause problems if
there are other procedures that call them. We can catch
these by inserting the procedure command
‘Breakpoint’ in the (otherwise) empty procedure. If
this “empty” procedure is ever called, Omnis will stop
here, and the culprit’s name will appear in the ‘Stack’
menu! This method is a sluggard’s delight. Another
way of eliminating unwanted calls (which will appeal
to the conscientious developer) is to use ‘Find and
replace.’ For example: Search for *pProcedures/3*,
with ‘Allow wild cards,’ ‘Search from start,’ ‘All
formats’ and ‘Literals’ (or ‘Complete text’) checked
off.

Which variables are used?

Don’t be stingy: All the variables that are used in a procedure should
be checked. Errors are often found where you least expect them.

Are the variables or fields the right type?

General Methods Debugging 7

The OPT/RB menu shows the format in which the field or variable
has been defined (date field, number field, etc.). If it isn’t the right
one, you can go directly to the file format from the same menu and
correct it.

The Field type The Field value

Fig. 2 The field type and value as shown in the
OPT/RB menu.

What happens to them along the way?

That’s a good question! The reason it’s so hard to find out is that the
computer runs too fast. You have to slow it down and get Omnis to
show you what it is doing, or stop the procedures at strategic points.

Trace
The Trace function in the Debugger gives us a clear
picture of where things are headed when a procedure is
running. The Trace log gives a full accounting of what
takes place when a given procedure is run; it can often
tell us what we otherwise wouldn’t know. (Remember
to select ‘Trace all procedures’ if you’re not already
running a Trace.) Trace log is particularly useful for
Library- or Window Control Procedures. Bear in mind,
however, that Trace log will become quite large; it is
also cumbersome to read.

Breakpoints
Breakpoints within a procedure are yet another way of
controlling the procedure. The run stops by itself at
preselected places and the variables can then be
checked. A little experimenting with the Go point,

8 Debugging General methods

(Go) ‘To line’ and (Go) ‘From line’ will do the same
job.

TIP: Remember that (Go) ‘To line’ moves up to (but not including)
the line from which the command is given. In other words, the
procedure in this line is not carried out.

So I’ve found the error; what now?

That’s hard to say. If the procedure line remains a mystery, then it’s
high time to look up the command in the user’s manual. It’s just
possible that you have a mistaken idea of what a certain command is
used for, what it does, how it does it, and the kinds of demands it
makes on Main file mode, etc. In data processing terminology there
are a number of words that look the same but mean quite different
things, so take nothing for granted. Don’t fool yourself into thinking
that just because you have an elementary understanding of the term
being used, you know enough about how the command actually
works. Make a habit of consulting the user’s manual carefully and
frequently, until you’re certain you know exactly what a given com-
mand is supposed to do. You can check yourself by running a little
test in a test window; only then can you be sure.

Bugs in Omnis?

When you’ve done everything according to the book and the error
persists, the problem might be a bug in Omnis. If so, it’s time to ring
your nearest distributor, file a complete bug report (which will be
forwarded to Blyth), and take your bows! But before Blyth can
eliminate the bug, they need to know as much as possible about what
was happening in the application when the error occurred. In fact,
it’s not a bad idea to send them the entire application on a disk (or a
screen dump at the very least).

Omnis as a whipping boy
Blaming Omnis for not being error-free is a pretty
serious charge, you know; there must be grounds for
declaring the defendant guilty as charged. Granted,
there is a good chance you’ll stumble upon a bug or
two in Omnis; but when you are struggling with a

General Methods Debugging 9

difficult problem, Omnis bugs make a convenient
whipping boy. Check carefully to make sure that the
problem doesn’t lie with the application instead; it
could save you from filing a false bug report.

The datafile

The datafile itself has the potential for making your life miserable in
certain situations. The problem might simply be due to the fact that
the datafile doesn’t contain the names, firms, postal zones, invoices,
etc. that you thought it did. Since we cannot see the data in the same
way that we can see the procedure commands, there is an ever-
present danger that the datafile will not contain what we think it
does. Most developers won’t be able to remember exactly what data
are in the file. The following procedure is a simple means of
acquiring this information:

See the contents of fChild 1

Set current list #L1
Define list {fChild}
Set main file {fChild}
Build list from file

See the contents of fChild (1)
Then click with OPT/RB on #L1, and with the aid of
the popup menu bring up the Field Value window for
this list. For connected files it is also useful to include
the connections as well:

See the contents of fChild and fParent 2

Set Current List #L1
Define list {fChild, fParent}
Set main file {fChild}
Build list from file

See the contents of fChild and fParent (2)

10 Debugging General methods

Here every parent record that is connected to the child
records will appear together. For large files, the list
will be correspondingly (and equally) long. So you can
make do with selected fields from the two files; this
will require a bit more typing and mouse clicks,
however.

General Methods Debugging 11

Datafile header not updated
There may also be inconsistencies in the format of the
datafile and the file definition in memory. Failure to
reorganize after making changes in the file format can
lead to this very problem and produce the strangest
results during a search. Once in a while it will be the
datafile itself that is corrupted, which requires first aid
from the ‘Utilities’ menu. If the file is a hopeless case,
then save what you can by exporting.

Omnis error messages

If you do get an Omnis error message, correcting the error is fairly
straightforward. In Appendix A of “Reference 2” there is a list of
error messages and what each one means. Nevertheless, it will pay
you to check everything that affects the relevant command and look
up the description of it in “Reference 1.”The error could be located
further back from what actually set off the error message. The error
message ‘Find without an indexed field’ could mean, for example,
that the wrong main file has been set, not necessarily that the field
has not been indexed.

qCHhcq
Never succumb to the trial-and-error method.

Errors can seldom be corrected by chance. The
only thing that helps here is a thorough and

systematic approach to the debugging process.

qCcq

12 Debugging General methods

Window or Procedure?

Your first encounter with an error in an application will most likely
follow this pattern: Omnis stops and shows the offending procedure.
In other cases Omnis will not stop, and it is the developer that is left
holding the bag. But in both cases the question remains: Where is the
error? In windows, the natural thing to do is to check what’s on the
“front side” first, i.e. the window fields themselves and their settings,
before you start on the procedures. Note the following in particular:

The ‘local’ option in window fields
Display fields where the ‘Local’ option has
inadvertently been left unchecked will appear to be
unresponsive. While the developer desperately
searches for an error in the procedures, the error lies on
the front side of the window.

Fields in wrong boxes
Display fields with ‘Auto find’ where the field that
Omnis is supposed to do the ‘Find’ on, and the field
that contains the value it fits, have been switched. It’s
not all that easy to keep track of which field goes
where: The value that fits (or the variable containing it)
should be in the calculation box (under ‘Calculation’)
and the indexed field should be in the field box (after
‘Name:’)

The field order in the window
Is the field order correct? ‘Auto find’ fields are very
sensitive in this regard, and whole groups of radio
buttons will not work at all if the order of the window
elements is not as it should be. If one or more field
procedures are called by other procedures, you should
exercize caution when you change the field order. This
will cause the procedure addresses (‘wWindow/3,’ for
example) which refer to that window to change
meaning entirely, and the wrong field procedures will
run. However, the calling of field procedures in
windows is bad programming practice.

General Methods Debugging 13

‘User defined’ not selected
Pushbuttons that are not changed from standard ‘Find,’
‘Insert,’ ‘Edit,’ etc. to ‘User defined,’ when there are
procedures behind them that are to run alone. This is
an irritating and all-too-common error. In v1.x, the
result was that the procedure was never run; from v2.x
on, the standard button action is carried out in addition
to (before) the user-defined field procedure.

14 Debugging General methods

How the Procedure Window Is Built Up

1

2

3

4

5

Fig 3. The Procedure Window showing the debugger menus

Since we will continually be referring to various parts of the
procedure window, we should make it clear what they mean. In the
text that follows, these numbers will be referred to in parentheses.

1 The debugger menus

2 Procedure title list

3 Procedure Tools window

4 The ‘Go/Step/Step Over/Trace’ pushbutton

5 The procedure itself

General Methods Debugging 15

Finding the Right Procedure

If you feel reasonably certain that the error is in a specific procedure,
you need a handy way of finding the right one in a jiffy. In v2.x,
windows and menus contain up to 500 procedures each. Scrolling
through all these procedures in order to find a particular one is
inordinately time-consuming. Instead, try the following:

Looking under the field
Select a field in the window and press CMND-5 or F5
to view the procedure behind it.

Using specific procedure lines
If the procedure contains a reference to other formats,
locating these is an easy matter. Simply select the
procedure line and press CMND-8 or F8. Look for the
following procedure commands:

Open window
Install menu
Set report name
Set main file
Call procedure
Set search name

By selecting one of these procedure commands, we
also get a list of formats of the same type (in the
Procedure Tools window). This, in turn, gives us
access to the format names; we can click on one of
them with OPT/RB and select ‘Modify’ from the menu
that appears.

Using the comment line
Interesting formats (for example, menus and windows)
can be jotted down in the comment lines, one format
per line. These may then be brought up by selecting the
comment line and pressing CMND-8 or F8. If the
comment line contains more than one format name,

16 Debugging General methods

you must click on the desired format with OPT/RB and
use the popup menu to locate it.

Using the Trace log
Relevant procedure addresses can be stored in the
Trace Log. Run one procedure line using ‘Step’ in
each procedure – preferably a comment line that
contains a little explanation (or a copy of the procedure
title); the procedure address will automatically be
transferred to the log. Later all you’ll need to do is
double-click on one of these lines in the Trace Log,
and the corresponding procedure will appear.

Entering the procedure number
If you know the number of the procedure you want to
see, you can click on the Procedure Title List (2) and
enter the procedure number. The list will continue to
scroll as the numbers are entered, just as when we
select procedure commands during programming.

Using various hot keys
There are many keyboard shortcuts. (Macintosh
developers who do not have an extended keyboard are
advised to get one.) Click on Procedure Title List (2).
The HOME key locates procedure number 0, i.e. the
initiating procedure. The END key takes you to the last
procedure, which is often the Window Control
Procedure or list with format variables. In any case,
since the last line is so accessible (you may also get
here by dragging the vertical scrollbar all the way
down), you would do well to place often-used
procedures here.

The PAGEUP and PAGEDOWN keys work in this list
just as you would expect them to, and they can be used
to speed up scrolling. The chapter entitled “Keyboard
Shortcuts” deals with a number of related functions.

General Methods Debugging 17

Manipulating the Way Procedures Are Run

When the right procedure has been found, it’s time to take over the
steering wheel from Omnis; now it’s your turn to drive. The
procedures have to be run in small bits, one segment at a time, so
that you can analyze every point in the run. You can control the
process manually or establish criteria for each stop along the way.
Whichever method you choose, Omnis is obliged to comply.

Manual control using “Run pointers”

By “run pointers” we mean pointers at specific lines which tell
Omnis how to navigate between the different procedures.
Manipulating these will give you effective control of those
commands that are to be executed – and thus, control of what is
taking place.

Go point Breakpoint Breakpoint command

Fig. 4 Some of the run pointers

18 Debugging General methods

The Go point

When Omnis runs a procedure, it moves the Go point along. Go
point is the “next line up” to be run. This is indicated by a “G” in the
left-hand margin of the procedure line. A good way to set Go point is
to double-click on the line you want. We know that Omnis will start
here when we choose ‘Go,’ ‘Step,’ ‘Step Over’ or ‘Trace.’ Even if
you are working on another procedure, Omnis will still run from the
Go point. The procedure being run will appear immediately.

Running commands of your own choosing
By moving the Go point around in the procedure, you
as a developer can skip over procedure commands that
are unwelcome at that point, give individual
commands, and in general create exactly the kind of
situation you want.

Starting from the top
‘Execute procedure’ (‘Modify’ menu, CMND/CTRL-E
when the debugger menus are hidden in v2.x, always
in v3.x) runs the procedure from the top, regardless
where the Go point is. This menu command is handy
when an entire procedure is being run, i.e. when the
testing of the individual subsections is complete. For
that matter, we can put the Go Point on the top line and
then select ‘Go’ (CMND/CTRL-E when the debugger
menus are shown in v2.x, always in v3.x).

The Go point address
The name and address of the procedure containing the
Go point will crop up in the Debug menu. If you are
working on other procedures, you can return directly to
the procedure where the Go point is located by
selecting the address from this menu. In this way, the
Go point acts as a book marker, for example when you
are working with a main procedure that calls many
other procedures.

General Methods Debugging 19

Fig. 5 The procedure address of the Go point

Breakpoints

Here is where Omnis stops. Breakpoints can be used to break up
procedures “the hard way,” so that the run is halted at fixed spots. If
you press ‘Go’ again, Omnis will continue to run from this point.
The line containing the Breakpoint is executed only when the
developer continues the run. Breakpoints can be set as a procedure
command or marked off in the margin by means of the ‘Breakpoint
menu’ (in the debugger menu group). The latter can also set a ‘One
Time Breakpoint,’ which disappears after the Go point has passed it
once during a continuous run. (Applies to ‘Go’ and ‘Trace,’ and not
‘Step’ or ‘Step Over.’) We can bring up the ‘Breakpoint’ menu as a
popup menu by pressing OPT/RB in the left margin of the procedure
(when the debugger menus are shown, that is).

Return point

When a procedure calls another procedure, it waits at the line that
contains the command ‘Call procedure’ until the other procedure is
finished. This line acquires a “label” called the “Return point,”
marked by an “R.” (The Go point is somewhere in the other
procedure.) When the other procedure is finished, the Go point
reverts to the Return point and continues from there. When the Go
point has returned from its little excursion to the other procedure, the
Return point is no longer needed and is removed automatically.

20 Debugging General methods

The return point as a reminder
When the developer himself moves the Go point
within a procedure, Return point appears as a reminder
of where the developer last had the Go point. The little
“R” has no further effect in this case.

General Methods Debugging 21

Manual control using “Run modes”

There are several ways of running through the procedures. Each one
has its advantages, and with a little imagination you can exploit these
effectively and amusingly. Let’s take a closer look at them:

Go
‘Go’ means, pure and simply, that Omnis runs the
procedure from the Go point without doing anything in
particular for the developer along the way. The
window with the procedure waits patiently until the
procedure is finished and the developer can examine
the result. If the Go point encounters a Breakpoint of
any kind, if will of course stop there.

Trace
‘Trace’ runs the same way as ‘Go,’ but it also shows
how the procedure lines are run. The line being
executed is highlighted (inverse), and to the developer
the whole thing will appear as a mostly black line that
scrolls down the procedure lines. Procedures that are
called are retrieved one by one as the Go point passes
by. It can be terribly frustrating and confusing to try to
keep yourself oriented in a window that is constantly
blinking, scrolling, and changing appearance. On the
other hand, we are able to trace Omnis’ every move, as
well as keep tabs on which procedures are being run
and the order in which it takes place. Keep your eyes
fixed on the procedure titles in the list on the left and
notice which procedures are being highlighted; this
will ease your frustration. You’ll have a much more
“restful” screen during Read Only mode; what is more,
the run will zip right along. (See below.)

If you are quick with the ‘Stop’ pushbutton, you can
use it to stop the run at the right places and check the
content of the variables before continuing. During
‘Trace,’ all the procedure lines will be copied to the
Trace Log, so you can return here later and peruse
them. (But it gets filled up in hardly no time at all.)

22 Debugging General methods

Step
‘Step’ runs the procedure line with the Go point, then
skips to the next one and stops. This is like giving
single commands. Every ‘Step’ advances the Go point
by one line. This is a thorough (and often time-
consuming) method of going through the entire
complex of procedures. ‘Step’ is easy to use, and
together with a little moving around of the Go point,
the developer will have the situation under full control.
This method is perfectly satisfactory, and many prefer
it to the fussiness and sense of powerlessness that
‘Trace’ entails. If the Go point comes to a ‘Call
procedure’ command, the window will display the
procedure that is called, and we can see it being added
to the Procedure stack in the ‘Stack’ menu.

Step Over
This method of running the procedure is very similar to
‘Step,’ except that it doesn’t display the procedures
that are called. Instead, the window remains inactive
while the other procedure is being rapidly executed.
This is useful when you are debugging procedures that
occasionally turn calls into subprocedures and you
know that these are working as they should. In such
cases it isn’t necessary to comb the subprocedures
once more; they will be executed as the Go point
passes each line containing a call, and the debugging
can continue undisturbed in the procedure at hand.

Change “Run mode”
Provided the debugger menus are displayed, you can
switch back and forth between different run modes,
which may be selected directly from the ‘Debug’ menu
(farthest to the left); or, with OPT/RB, you can click on
the ‘Go’ pushbutton in the right-hand corner (4). The
former also starts the run, but the latter only changes
the run mode. Click normally to start. However, you
should learn how to use the four corresponding
keyboard shortcuts that are shown in the ‘Debug’
menu; they are sure to come in handy.

General Methods Debugging 23

Read Only mode
“Read Only mode” is a misnomer. It is a diffuse
expression and can easily by confused with Read Only
status for file formats. Simply put, Read Only mode is
a means of speeding up ‘Step,’ ‘Step Over’ and
‘Trace.’ When the Go point moves downward in
normal “change” mode, the highlighting keeps pace
with the lines that are being run. This means that the
procedure command in each line is displayed in the list
in the Procedure Tools Window (3), and corresponding
boxes and lists appear. This is the same thing that
happens when the developer selects or clicks on a line.
But it takes time. When you are in Read Only mode,
the Procedure Tools window is hidden and your
computer will be relieved of these tasks. This will
make it easier for the computer to go from line to line.
The speed premium is great, which makes stepping all
the more useful.

When you go through a procedure to find the cause of
an error, it’s primarily the variables and fields you’ll
be dealing with, not the procedure commands. Only
when you see a relationship between the two will it be
kosher to edit the procedure. If you do, go into normal
“change” mode by turning off Read Only mode.

Active fields and Read Only mode
Another potentially major hindrance to speed is the
Active Fields List window. In Read Only mode this list
will not be updated automatically. Select ‘Redraw’
from the “R” menu in the window to view the relevant
values in the fields.

The advantages of manual control
The more familiar you are with the manual method of
controlling a run, the easier it will be to control the
testing when checking for errors in procedures. Since it
is the test results that tells us where the problem lies, it
follows that improving your testing skills will make
you a better developer.

24 Debugging General methods

Conditional stops

The art of looking for bugs in applications is largely a matter of
being able to stop the run in the nick of time. As a developer, what
you are after is that magic moment when you catch a fleeting
glimpse of the Error that you are trying so desperately to pin down.
It is at this very point that the incriminating information in the
variables and fields lies within your grasp. As a rule, you will get
there sooner or later; all it takes is time, patience, and a bit of subtle
maneuvring on your part. Those with keenly analytical minds might
make more rapid progress, however, by getting Omnis to stop at the
right set of conditions. The logic called for is strict and demanding,
but getting a handle on it is not as frightening as you might think. In
any case, an attempt is well worth the effort.

Break on field change

If a field or a variable is set to ‘Break on field change,’ Omnis will
pause and display the procedure line every time the content of the
field is changed from one value to another, notwithstanding #NULL.
Although this method is straightforward enough, it can lead to the
run stopping many times before the error is found. You should
choose a field for ‘Break on field change’ with care. Don’t let too
many fields be set that way; it will only cause Omnis to stop
constantly, and the developer will loose track of what is happening.

Break on calculation

Where ‘Break on field change’ has its biggest weakness, ‘Break on
calculation’ is on hand to help. To keep the run from continually
being interrupted, you can insert a couple of conditions that must be
met before Omnis can stop. The beauty of this is that you can insert
the very thing you think is wrong!

Examples of conditional breaks
For example, if you see red because #1 becomes null in
the course of a procedure, you can set the Break
calculation to #1=0 (using ‘Set Break Calculation) and
see where this leads you. Omnis will stop as soon as
something unforgivable happens, and all you have to
do at that point is backtrack. We know that the error
has just occurred, so it can’t be far away. If there is a

General Methods Debugging 25

‘Trace on’ command at the beginning of the procedure,
we will be able to see (in Trace Log) everything that
has happened up to the break, including any
procedures that are called. (To avoid superfluous
procedure lines in Trace Log, place the ‘Trace off’
command at the end of the procedure.)

If the error lies in the fact that the content of the fields
in the file format fChild vanish from memory, you can
set the Break calculation to ‘C_RSN<1.’ This will
cause Omnis to stop when the sequence number
(C_RSN) is deleted from memory. The calculation
may be ‘len(C_TEXT)=0,’ in which case Omnis will
stop when the content of text field C_TEXT is deleted.

The Break calculation applies globally
The calculation is carried out every time the Go point
passes a line that changes the value of a variable or
field in the calculation. The condition(s) apply globally
and, strictly speaking, are not dependent on the
variable to which you set the Break calculation. There
is only one Break calculation anyway, so it doesn’t
matter which field you choose enroute to it. In other
words, you are free to insert whatever calculations suit
your fancy.

Limitations
Just as with ‘Break on field change,’ it is not advisable
to set up too large a calculation, with many conditions
and criteria. This will complicate the logic and make it
harder for the developer to keep pace. And there is
always the danger that the test situation itself is not
right. Errors in the testing phase are sinister, and
should be avoided at all costs.

26 Debugging General methods

Viewing and Altering the Values of Variables
and Fields

You get to the root of an error by looking for the right information at
the various stages of the procedure. In other words, the easier it is to
find this information, the sooner you will find the cause of the error.
Simple and effective methods for (primarily) viewing the values of
variables and fields is all-important. In addition, you will need to
examine other parameters, for example those concerning Main file,
its file mode (Read Only, Read/ Write), etc.

Option/Right-hand Mouse Button (OPT/RB) menu

One of the most delightful things about Omnis 7 is how easily the
developer can manipulate the content of variables and fields. The
tool for this purpose is called the Field Popup menu, which we will
refer to as the OPT/RB menu. For Macintosh users, this menu
appears in various guises when you hold down the option key and
click on, say, a field. In Windows, the right-hand mouse button (RB)
is used instead of option–click. In the Field Popup menu you can
directly observe the value of the field, as well as call up the Field
Value window by selecting the topmost menu line. (The field name
appears here.) Furthermore, the different variations of the menu all
have shortcuts that you’ll soon learn to appreciate.

Fig. 6 The OPT/RB menu

General Methods Debugging 27

Using the menu
By clicking around in window names, fields, lists,
report names, #variables, you will gather all the
information you need, and the situation will be
clarified. Everywhere a full name is shown, you can
click with OPT/RB and call up this menu. The various
menu choices are familiar commands for the
experienced user. If in doubt, turn to the chapter on the
debugger in “Design and Development.”

The Field Value window

This window is the developer’s standard tool for editing values on
the fly. Fields of all kinds can be altered directly, and Omnis will see
to it that date fields are assigned dates, number fields assigned
numbers, and so on. The window is indispensable during procedure
testing. One of the developer’s most useful tools, it deserves to be
used frequently.

Fig. 7 The Field Value window

The Field Value window for lists

Lists have their own variation of the Field Value window. The
content of each line can be altered directly by clicking where
appropriate. You can also control #L and which lines are highlighted,
as well as add new lines and delete others. Click with OPT/RB in the
lefthand margin of the list, and the list window’s own popup menu
will appear. The developer can simulate, within the procedure win-
dow, anything a user could think to do with the list, and can do so
without having to open the user window.

28 Debugging General methods

Fig. 8 The Field Value window for lists

The Values List window

This window shows the name of all the fields within a file format or
a category (#variable, format variable, etc.) and their respective
values. Since the window provides a great deal of information all at
once, it is a very handy tool to have, especially at the beginning of an
error search. It provides a fairly good overview. Later the window
can be used to view or alter values of a field that is not being used in
the procedure currently being displayed. The window does take up a
lot of room on the screen, however, and is not something you will
want to have open all the time. Example: Click with OPT/RB on the
name of any file format, and select ‘Show Values List.’

Fig. 9 The Values list window

General Methods Debugging 29

The Active Fields List window

Fields that are active are sent to this window, where the values are
continually updated. If the values of the variables change during the
run, this will be reflected in the Active Fields List. You should
position the window so that it isn’t covered up by other windows.
The easiest way to follow the changes is by means of stepping or
slow tracing.

Set fields to Active by clicking on their names with OPT/RB, and
then select ‘Active’ from the popup menu. When deleting the fields
from the Active Fields List, reselect this menu item (via the OPT/RB
menu) so that the “checked” character disappears.

Fig. 10 The Active Fields List window

30 Debugging General methods

Examining the Sequence of Procedures

Control procedures, Timer procedures, procedure calls, and Push-
buttons that are active under Enter data can all cause headaches for
the developer. You need to know at all times which procedures are
being run and in what order. The theory behind this is set forth in the
chapter entitled “Sequence of Procedures.” Let’s take a look now at
how we test the sequence.

Trace all procedures

The simplest method is also the dirtiest. If you select ‘Trace All
Procedures’ from the (Debugger) ‘Options’ menu, you’ll get the
whole story – but that might be a very long story! All procedure
lines, bar none, are sent to the Trace Log with address and content.
Every procedure takes up a lot of space in the Trace Log, and you
have to read the addresses to see when the next procedure takes over.
The procedure titles do not appear here, which makes the log hard to
read. The developer will often have to do a lot of scrolling and
searching.

The Trace log

The Trace log has been described as a kind of notebook, and rightly
so. ‘Send to trace log’ is one of the commands that can be used to
control it. If you equip every relevant procedure with such a
command, it will serve as a kind of tag indicating that the procedure
has been run. Thus, the Trace Log will be brief and concise. Take
care, however, that you have included all the procedures that relate to
the problem. The function ‘sys(85)’ will return the procedure’s
address so that we can use it instead of writing the procedure title
itself in the ‘Send to trace log’ command. It is also possible to send
variables and fields with this command. The values will be noted as
the various stages of the procedure sequence progress. Have the
Trace Log open while the testing is in progress and the procedures
are being executed.

General Methods Debugging 31

If you wish to see the sequence in more than rough outline, you can
trace the procedure lines themselves. It is a good idea to narrow the
scope of the row of procedures by means of the ‘Trace on’ and
‘Trace Off’ commands, inserted at the appropriate places in the pro-
cedures. This will keep your Trace Log from getting filled up with
more or less unwanted procedure lines.

OK messages

An ‘OK message’ in every relevant procedure allows the developer
ample time to think, because Omnis waits for you to press OK. The
disadvantage with this is that the onus is on you to remember the
order – which is sure to tax your memory in the long run. If you want
to view the values of variables and fields, put them in square
brackets (“[]”) inside the OK message.

Fig. 11 How to use square brackets in OK messages

Viewing the Procedure stack directly

If the Go point meets a Breakpoint, the run will stop and the
procedure containing the line with the Go point is displayed. We are,
in effect, right in the thick of things at this point and can view the
Procedure stack directly in the ‘Stack’ menu. A Breakpoint in the
middle of the last procedure in a string of procedures that call other

32 Debugging General methods

procedures will thus bring up the entire sequence of procedures
waiting to be executed at this very point. This string of procedures is
named the “Procedure stack.” It’s impossible to explain the
Procedure stack in two short lines, so please turn to the chapter
entitled “Sequence of Procedures.”

Fig. 12 The Stack menu

General Methods Debugging 33

Finding Clutter in the Application

Changing your mind is a natural thing, and at times it can be the
wisest thing as well. However, changes must be followed up consis-
tently – and not just for a few procedures that we might think of
offhand. The easy way to be thorough is to use ‘Find and Replace.’
This is a general tool that you will always discover new uses for.
You can use it freely and fearlessly if you understand what the
various choices in the dialogue box signify. Later, the ‘Find and
Replace Log’ will be of practical use, especially in view of the fact
that you are brought to the right format by double-clicking one of the
lines. (Each line contains the right “address.”)

Buttons in the ‘Find and Replace’ dialog box

Knowing the buttons inside the ‘Find and Replace’ dialog box is a
prerequisite for using this tool correctly, so let’s take a look at them.

Find
Executes a single search, and stops and displays the
result as soon as it finds anything. The result is, in fact,
the address telling us where the object belongs. The
address is also noted in the ‘Find and Replace Log.’

Find All
Here Omnis runs through all the formats that have
been selected for this particular search and makes a
note of each address in the ‘Find and Replace Log’
whenever it finds something that fits. This takes a bit
longer; on the other hand, it provides a better overview
because all the results are shown at one time.

Replace all
The ‘Replace all’ button can be a bit risky because you
can’t see exactly what you’re doing. You’re safest in
executing one ‘Replace,’ examining the effect, and
then running a ‘Replace all’ if the former succeeds.

34 Debugging General methods

Setting the criteria for the search

In addition to the actual text that the objects are supposed to match,
you may further narrow down the search using one or more of the
options represented by the check boxes.

Field names
Field names are searched for quite simply wherever
they are used. If the name is only a part of the free text
in a calculation, i.e. enclosed in quotation marks (" "),
it will not be used.

Format names
Format names are searched for just like field names,
i.e. when they are employed directly by the procedure
commands.

Literals
This option refers to text, as set off in quotation marks
(" ") in calculations, free text in windows and reports,
as well as numerals in calculations. It also refers to the
text in procedure addresses, such as in ‘Call
procedure,’ ‘Set window control procedure,’ and other
commands..

Procedure commands
Here the search is based solely on procedure
commands. All parameters, settings, etc. are
disregarded.

Complete text
When this option has been selected, the search text
should fit the entire procedure command such as it
appears (as text) in the procedure, with all parameters
and settings inside their appropriate brackets and
parentheses.

Ignore case

General Methods Debugging 35

If you are careless in your use of upper and lower case,
this choice will absolve you fully.

Allow wildcards
The two special characters “*” and “?” are useful when
you aren’t sure how a given procedure command is
written. The character “*” signifies any given number
of letters or numbers (limited by each procedure line),
whereas the character “?” is inserted for each and
every letter you are unsure about.

C_* finds everything that begins with “C_.”

*Child finds everything that ends with “Child.”

C_?? finds elements that begin with “C_,” but
they must consist of only 4 letters (here).

?Child finds elements that consist of 6 letters and
end with “Child.”

Search from start
‘Find’ normally continues the search from where it last
stopped or found something, regardless of whether the
conditions for the search have changed. By selecting
this option, you will ensure that the search starts from
the top of the first selected format.

Search backwards
The search starts from where it last stopped and works
its way up the lines in the procedures (i.e. format
“lines”). Later it works its way backwards in the
formats alphabetically.

36 Debugging General methods

Debugging in Multi-user Mode

In v1.x you are not allowed to alter the application in multi-user
mode. This means that the Design menu is not accessible, and you
won’t be able to get to the debugger menus. None of the virtues of
the debugger can be exploited in multi-user mode. This leaves us
with our trusty ‘OK message’ command. (Remember Omnis 5?)
Variables and calculations are set off in square brackets ([]); if
anything has changed, you will have to reopen the application in
Single user mode. For this reason you should do as much testing as
possible in Single user mode.

Version 2.x
Version 2.x doesn’t have this limitation. As long as the
developer has the right user level (#UL), and the
format in question is not altered by others in the
network, any format may freely be altered. During the
development work you will not have to close and
reopen the libraries every time the multi-user systems
are being tested and errors are being discovered.
Furthermore, several developers can work on the same
project and the same application at the same time. For
large projects this is welcome news indeed, and v2.x
comes with a multi-developer system together with the
version control (VCS).

A piece of advice
Bear in mind that you should always run a thorough
battery of tests on site, i.e. where the application is
going to be used, with all the different printers,
computers, monitors, and other components connected.
Remember Murphy’s law!

General Methods Debugging 37

In Conclusion

If you have ever sat and searched long and hard for an error in your
application and sensed that you’re getting increasingly irritated, then
it’s time to look at the clock. Very few people can engage in the kind
of intense mental activity that debugging requires for more than an
hour at a time. The galling fact that, for the moment, the mind cannot
conquer matter can actually inspire within you an almost malevolent
urge to press on. You will become obsessed with the thought of
finding “just this one error” before you quit and won’t notice that
you are too exhausted to find it. It’s not just that taking a break is a
“good idea”; the fact is, that elusive error is simply not going to be
found until you are alert and chipper again. And it’s during the break
that your batteries get recharged.

Many developers try to tough it out, fearing that if they stop, they
will forget what the problem was and waste valuable time trying to
get back on track after the break. For one thing, this is simply not
true. For another, they will most likely have worked themselves into
a blind alley and not have the energy to extricate themselves. And
with his fuel tanks on reserve, the hapless developer will succumb to
the temptation to use the dreaded “shot-in-the-dark” method, which
is a total waste of time. He can even become so tired that he is
unable to correctly interpret any key information that might arise. At
this point, debugging is not only fruitless but a source of misleading
conclusions, which in turn makes for a lot of extra work before the
developer finally realizes what’s going on.

Not only does time go by without bringing the developer any closer
to a solution; he also becomes more aggressive, his adrenal glands
start secreting copious amounts of adrenaline and corticosteroids
(stress hormones), his muscles tighten, his concentration begins to
slacken, and the vicious circle has begun. Then is when being a
developer is no fun at all.

The most important aspect of the break is the change of scenery it
provides. Go somewhere else and get your mind on something else
altogether. The human brain is an expert in parallel processing, so
you can be sure that the debugging is still going on – somewhere or
other – in your head. Drink a cup of coffee (anyway, that’s what I

38 Debugging General methods

do). Don’t watch TV, or the battle is lost. Instead, give someone
close to you a big hug (not a bad idea at all!).

After the break, you’ll be able to approach the problem from a
slightly different angle. That’s when new ideas often surface, and
points that previously escaped your notice will flash before your
mind’s eye. A solution is often teasingly close. With any luck, you’ll
soon be able to turn off your computer, switch off the lights, and
head home in triumph.

qCHhcq
If you see the Error of your ways, all the Bugs

will follow.

qCcq

Layout &
the User Interface

A Good Design.. 2
Effects .. 4

Use of colors
Placement
Letter effects
Typefaces
Choosing fonts in reports and windows
Gray tones and shadows

Logical Arrangement of Menus and Windows ... 13
Menus
Windows

 2 Layout & the User Interface General Methods

A Good Design

Layout and the user interface are but two sides of the same coin.
Both aim to facilitate communication between user and computer.
Layout is concerned with the manner in which the various aspects of
the application are presented to the user; the user interface
encompasses practical solutions to the communications problem and
to how the user interacts with the application. The primary goal of
every user interface is to be as intuitive as possible for as many users
as possible and obviate (or at least minimize) the need for an
instruction manual. Or, to put it in plain English, the goal of any
good user interface is to make an application easy to use.

The sorting of elements
Users need help in distinguishing important elements
from less important ones. The layout directs the user’s
attention where the developer wants it and is thus the
key to the sorting process. If every element in a
window were to be given equal weight, the user would
be left with the burden of finding out just what the
application purports to do in a given window.
Windows like that can be worse than useless. Your
stock with the user will rise considerably if you can
spare him or her much of the sorting work.

Prerequisites
There is a limit to how clearly a window can be made
to look for the average user. We’re all different, with
different ways of looking at the world around us. And
it won’t be easy for you to decide on which method of
presentation is absolutely the clearest so that everyone
– without exception – will understand that this is how
the application is to be used. Don’t be pedantic about
it. Applications are designed for typical use, where the
user is on familiar ground. Anyone’s first encounter
with a particular window is going to be a special
experience anyway. Trying to make the window
explain everything and cover every conceivable base is
like trying to print an entire user’s manual on a postage
stamp. In most cases all that’s called for is a fairly

General Methods Layout & the User Interface 3

orderly presentation of the elements, perhaps a couple
of small icons, a few drawings, and some good ideas.
If your window is esthetically pleasing to boot, so
much the better.

qCHhcq
Guide the user’s eye through the window.

Make the important parts easy to find.

qCcq

 4 Layout & the User Interface General Methods

Effects

An application’s appearance is a fixed feature of the user’s daily
work situation. The same windows are going to be seen every day.
Bear this in mind when you set about designing the overall look of
your application. Better a neat, orderly and (dare we say) staid look
than a flamboyant, overstimulating grabbag of effects, which will
only divert attention from the task at hand and which – at worst – can
be downright off-putting. As a rule of thumb we can say that only
two (or at the most three) elements should stand out in relation to the
others. Now let’s consider a number of specific effects and the ways
in which they can be effectively employed. And remember: where
effects are concerned, sobriety is a virtue.

Use of colors

Subdued pastel colors are preferable to gaudy, glaring ones,
especially on large surfaces. Color contrasts, where used to
distinguish different elements, should be sharp. And don’t mix
similar colors (for example, don’t use green text on a yellow
background).

Colors can impart intuitive associations to elements. Red could
signify commands that effect the data in some crucial (or potentially
catastrophic) way; green could stand for “safe” commands, etc.
Assigning specific meanings and associations to specific colors will
always be a matter of personal preference. When you use colors to
express something specific, you should be consistent. On the other
hand, don’t let color coding in itself feature so prominently that the
colors are made to compete for the user’s attention. The American
essayist Ralph Waldo Emerson once wrote that “consistency is the
hobgoblin of little minds.” As we’ve seen, it has its place; but if you
are dogmatically consistent and fixated on the use of color codes,
you are sure to end up with glaring and unelegant windows. Think
big: A pleasing surface appearance is more important than a “self-
explanatory” window with color codes. Alternatively, you can set off
elements with smaller color surfaces – perhaps even just a red line.

General Methods Layout & the User Interface 5

Placement

The placing of fields and text is an effect in itself and ought, as such,
to flow logically from left to right. The crux of what you are
communicating lies in the text, not in the pictorial expression.
Arrange the fields in logical order, from top to bottom, and employ a
line or column orientation. Line orientation is easier for the
developer to work with than a column orientation, since the fields in
the window will not need to be of equal width. Plenty of room (“air”)
around a field or a title is also a pleasing effect. It is eye-catching and
doesn’t slow the reading.

qCHhcq
Let the order convey the message.

qCcq

Letter effects

Where there are space limitations in a window, letter effects can be a
pretty good alternative. You should bear in mind, however, that by
their very nature they slow down the reading. The more pronounced
the effects, the slower the text will have to be read – and the more
attention it will call to itself. But if everything is equally heavy
reading, we will have failed to achieve any contrast, and the user will
have to spend more time trying to find out what the window is trying
to say.

Capital (upper case) letters
Capital letters (“all caps”) are unsuitable for large
blocks of text because they are harder to read than
lower case letters set in italics or boldface type. The
reason for this is that a word written in lower case
letters is recognized largely with the aid of the outer
contours of the word as a whole. Words written in all
caps, on the other hand, have no distinctive shape

 6 Layout & the User Interface General Methods

except that of a ragged rectangle; and because of this,
the reader is forced to focus more or less on one letter
at a time.

Boldface type and italics
Boldface type and italics are moderate, readable
effects, and may readily be combined. These are
among the most frequently used effects in general
design and layout.

Underlining
Before the age of computers, underlining was one of
the very few effects that a typewriter could produce.
Even though most people are accustomed to seeing
underlined text in typescript, the fact remains that in
terms of readability, underlining is almost as poor as
all caps. The underlining disturbs the reader’s
perception of not only the word’s overall shape, but
that of the individual letters that make up the word.

Size
It is customary in written material to make headings
larger than the main body of the text. The sorting
effect, however, only works when the differences are
clearcut and well-defined. Much of the purpose is
defeated when the developer tries to distinguish may
levels of text by means of letter size. The result is often
a cluttered look. Size is defined in terms of points,
which is an old (and completely non-metric) typo-
graphical unit of measurement. When computers came
on the scene, “points” made a simple and successful
transition, and now means the same as “number of
pixels in height.”

Typefaces

Typefaces (often referred to as “fonts”) are a major factor in the
readability of any layout. As with all other text effects, it is essential
to give careful thought to your choice and use of typefaces and to the
specific functions they are meant to perform. There is an almost

General Methods Layout & the User Interface 7

endless variety of fonts. Some fonts are unexciting but highly
readable; others, again, are eye-catching and stylish in themselves
but useless for anything but headings or invitations. Don’t be
seduced by a font’s artistic aspects; rather, consider its concrete
characteristics. We will do just that in what follows.

Monospaced fonts
In monospaced typefaces characters are of equal width
– both on screen and on paper. Even the space between
words (produced by hitting the space bar) has the same
width. Most typewriters employ monospaced charac-
ters. The advantage of monospaced typefaces is that
we can place words and columns in vertical order with
the use of the space bar. Where lists are displayed in a
list field in windows, this is an important advantage.
The disadvantage of monospaced typefaces, however,
is that they do not help the eye to follow the flow of
text in a line, because the space between the letters is
too large. Such type styles suffer from poor readability.
Most do make up for this, in some measure, by
employing large serifs (more on serifs later).
Monospaced fonts take up a lot of room, especially
horizontally. Well-known fonts of this type are
Monaco and Courier.

Proportional typefaces
The large majority of typefaces are proportional. The
distance between the letters is determined by which
character follows another. Each combination of paired
letters has a predetermined space relationship, based
on eye measurements of the designer of that particular
font. Letters with proportional spacing appear closer
together without overlapping each other, the shape of
each word and each line of text can be clearly
perceived, and the text itself is much more pleasant to
read. The art of determining the distance between pairs
of letters is called “kerning.”

With proportional fonts, you must use the tabulator to
vertically place elements such as words, lines and
columns under each other, or to place the various
segments in their respective fields. The old method of

 8 Layout & the User Interface General Methods

using the space bar will not work, because neither the
character spacing nor the space between the characters
is the same for any two kerning pairs. Examples of
proportional fonts are Helvetica , New York, Times and
Geneva.

Serifs
All typefaces can be divided into two basic categories:
Serif and Sans serif. “Serifs” are the small lines or
outcroppings that appear horizontally (or at straight
angles) on the ends of curves and lines in the letters. A
capital A, for example, will consist of 3 serifs: one at
the point on top, and one on each of the “legs.”

A
Fig. 1 Serifs

Sans serif fonts do not have these serifs, or small lines.
The purpose of serifs is to guide the reader’s eye from
left to right along the line. They help group the words
in such a way that they can be perceived as distinct
units. Large blocks of text can be more easily (and thus
more speedily) read in a serif typeface. New York,
Courier and Times are all fonts that have serifs,
whereas Helvetica , Geneva and Chicago do not.

Choosing fonts in reports and windows

Sans serif fonts are usually not recommended for large blocks of
text. Headings, on the other hand, are an altogether different matter;
they are meant to attract attention. In any case, all the rules of good
layout apply.

Fonts in window fields
For editable fields in windows, the situation is
somewhat different. One of the most important

General Methods Layout & the User Interface 9

considerations is ease in editing; it must be easy to
place the cursor between the letters. Proportional fonts
in small sizes can sometimes cause big problems for
the user in common editing tasks (typically when “i”
and “l” appear in close juxtaposition, such as in the
word “fill”). This factor must be weighed against the
amount of room available for fields in a given window,
since monospaced fonts generally take up more room.
It is also possible to experiment with the size of the
font to obtain an editable result.

Field labeling on screen
You will probably never be able to avoid writing
beside each field in the window what the user is
supposed to write in them. Without labeling, you risk
having the wrong data in the different fields.
Nonetheless, these labels are not central elements,
because the user will soon learn the right order. The
field names are meant more as “reminders” than as key
elements. Therefore they can be set in small,
inconspicuous letters. The same goes for reports. Even
though labeling is very important, the labels
themselves need not be read every time.

(The Omnis help system is an alternative, but it forces
you to glance back and forth from the help bar at the
bottom of the screen to the window field that you are
pointing at.)

Gray tones and shadows

Dark text on a gray background is a mild, pleasing contrast, apt for
less crucial elements. Entry fields filled with white will stand out
clearly against a background that is light gray. In addition, the gray
tone will make it easy to create shadows and three-dimensional
effects. Many commercial applications make effective use of such
effects. The illusion of inset and outset frames is quite popular, and
with good reason: we are equipped by nature to cope with a three-
dimensional world.

 10 Layout & the User Interface General Methods

The color palette
The default colors in Omnis include few gray tones.
But it is not all that difficult to make your own even
gray tone scale with which to “fine-tune” your
windows with subtle shadings, giving them a pleasing
look. For example, let the left column in the tools
palette contain black, white, and a couple of strong
colors, and use the entire right column for gray tones
all the way from dark gray to off-white. Let most of
the tones be in the light end of the scale. (Windows
users will for the most part have to resign themselves
to using the existing set of colors and gray tones, or try
their luck with “dither” patterns.)

Outset frame Inset frame

Fig. 2 How to draw outset and inset frames

Outset frames
Use a light gray background. Draw four separate lines
in such a way that they form a rectangle just outside
the field that you want to stand out three-
dimensionally. (Hold down ALT/ CMND to draw the
lines evenly.) Fill the field with the same gray tone as
the background. Select the left and upper lines of the
rectangle and set the foreground color to white (tools

General Methods Layout & the User Interface 11

palette, letters in different colors). Then select the right
and lower lines and set the foreground color here to
dark gray. You may also use black, but the contrast
might be unnaturally sharp.

The white lines give the illusion of an edge. The
impression is one of light shining in from the upper
left. The dark lines give the illusion of a shadow cast
by the outset frame. You can create the shadow
illusion alone by just using an angle of dark gray lines.
Alternatively, this angle can be laid just outside the
edge of a monochrome, black rectangle, creating the
impression that the figure itself is casting a shadow.

Inset frames
The procedure here is the same as for outset frames,
except that the lines are colored (in pairs) the opposite
way. The left and upper lines should have a dark gray
tone, and the right and lower lines should be set in
white – just the opposite of the outset frames. The light
and dark lines give the illusion of edges and shadows,
respectively, as mentioned above, and the “light” is
perceived to be shining in from the same angle.

Greater depth
To give the impression of more pronounced inset and
outset effects, the lines can be made thicker. Or you
can draw an additional set of lines and move them one
pixel down and one pixel to the right. You can copy
each of your lines with the aid of ‘Copy’ from the
‘Edit’ menu or create a copy directly by holding down
the OPT/CTRL keys. The length of the lines must often
be shortened to avoid overlapping. Make fine adjust-
ments to the placing of the lines with the aid of the
arrow keys, which move the objects one pixel at a
time. The effect of depth will be more convincing with
lines that are set close together than with one thick
line, because the ends of the lines ultimately determine
the shape of the inside (or outside) of the three-
dimensional box. The more lines that are under each
other, the great the sense of depth.

 12 Layout & the User Interface General Methods

Saving the best for last
You will have use for all the imagination and creative
energy you can muster when designing the appearance
of your windows. Window design, however, is
something you should save for last, because every
alteration of a field’s size and placement necessitates a
corresponding adjustment of every depth and shadow
effect.

3–D effects in v3.x
In v3.x, three-dimensional effects are already included.
Now, all kinds of window fields may be given 3–D
effects simply by selecting an option. Still, the
techniques described previously may still have a
purpose, as it is nice to divide various parts of your
window by using 3–D boxes or bars.

qCHhcq
Don’t let more than 2 or 3 elements compete for

attention.
And don’t try to distinguish between too many

levels of gradation.

qCcq

General Methods Layout & the User Interface 13

Logical Arrangement of Menus and Windows

Apart from the file structure, the way in which windows and menus
are logically arranged is the key factor in the effectiveness of an
application. The user-friendliness of the application depends upon
the windows’ being arranged in a readily grasped pattern. This is
necessary to make it easy to find your way in the maze of dissimilar
(and increasing number of) functions in the application. A confusing
application does nothing but give an impression of amateurism.

Menus

If the user can recognize certain elements, you’re off to a good start.
For Macintosh users this means that the Apple, ‘File’ and ‘Edit’
menus appear in their usual order. Windows users usually see
corresponding menus in the same locations. Thus we already have
two sorting groups. (The Apple menu can be edited only slightly.)

File
The ‘File’ menu, as a rule, contains commands that
involve larger and more generalized tasks related to
importing and exporting data, as well as entering and
exiting the program. The following are typical
commands in this regard:

Open data file…
Export data…
Import data…
Select Print Destination…
Print Report…
Page Setup…
Choose Printer…
Quit

 14 Layout & the User Interface General Methods

Edit
This menu cannot be altered in version 1.x; but since it
contains ‘Cut,’ ‘Copy,’ ‘Paste’ and ‘Clear,’ it is best to
use it as it is. In version 2.x, however, even the ‘Edit’
menu is fair game.

Choosing menu titles
The application’s distinctive character is an important
factor. If the user’s workday consists of three or four
main tasks, each with its own window, then it is just as
well to assign a window for each task. For most retail
stores, the set of menus might look something like this:

 File Edit Sales Inventory Credits
Reports

Fig. 3 A menu line in a concrete style

The layout shown in Figure 3 is easy to follow. If,
however, you have many different windows, there
might be too many, and the screen may be too small to
accommodate them. In that event, you must distill the
commands to a set of common features and sort them
accordingly. One possible solution is the following:

 File Edit Windows Commands
Reports Tools

Fig. 4 A menu line in a more generalized style

The most important thing is that the user should not
have to search for the function that fits what he or she
is trying to do.

Hierarchical (cascading) menus
According to Apple’s Human Interface Guidelines,
hierarchical (or cascading) menus are to be avoided
because they tend to hide commands, making them less
accessible. Nevertheless, such menus are useful in

General Methods Layout & the User Interface 15

applications that contain a great many commands. The
menu line, after all, is limited; but with hierarchical
menus we can fit in a lot more. The important thing is
to ensure that the title of each submenu is representa-
tive for all the commands it contains.

Windows

The same ground rules apply for menus and windows. Each window
should have a main theme, so to speak, one that is broad enough to
allow for more than one command. As a point of departure, it is a
good idea to create a window for every file format that will be set to
Read/Write. If the reports are not placed in their own menu, then we
need a window with a list so that we can select reports for printouts.
In addition, there are all the smaller subsidiary windows.

Subsidiary windows
Windows and dialogue boxes that crop up here and
there are uniquely suited to attracting attention. They
are perfect for receiving text, numbers, or user’s
choices when the application cannot proceed until
these have been received. There is plenty of
opportunity to steer the user away from dubious opera-
tions and, with the aid of labels and messages in the
smaller windows, clearly indicate what is going to
happen. The procedures, buttons, and fields will be
separated from the mother window, which in turn
makes the programming easier.

Hiding and showing fields
You can switch back and forth between hiding and
showing fields within the same window in order to
guide the user’s input. This is an alternative method
that works best for simpler tasks that don’t require a
great deal of feedback to the user. If the user is
expected to do something that’s not relatively self-
explanatory, then it is best to reserve a special window
for that purpose. The procedures for showing and
hiding the remaining fields must be adjusted if the

 16 Layout & the User Interface General Methods

order of fields in the window changes (which happens
all the time!).

qCHhcq
The application as a whole should be adapted

to the user’s daily work situation after the initial
training phase.

qCcq

Section 3: The Database Engine

Chapters:

1. Data Structure: Memory & Hard Disk

2. Field Types & their Function

3. File Connections

Data Structure:
Memory & Hard DiskMemory & Hard Disk

Some Basic Terminology ... 2
Database terms

Structure of Data on Hard Disk .. 4
Datafiles.. 5
File Formats .. 7

Main file
Records.. 9
Fields .. 10
Indexes .. 12

What is an index?
Building indexes
Indexes spread over several fields (v2.x)
Binary search

The Function of the Internal Memory... 18
How the Internal Memory is Organized .. 19

Current Record Buffer
The rest of the memory
Several datafiles in memory (v2.x)

Variables .. 25
Local variables
Format variables
Global variables
Manipulating variable declarations
Hash (#) variables
Parameters and parameter passing

2 Data Structure The Database Engine

Some Basic Terminology

In computer terminology, the word “file” is a very broad concept. A
file is really nothing other than a restricted entity within a storage
medium that the computer can handle. Files are structured in a
recurring pattern, which makes it possible to search them. There are
files on both hard disks and diskettes. In these storage media, files
are basically programs, applications, or documents, e.g.
programming code or stored data – roughly speaking.

Database terms

For a database, the situation is a bit different. Here, a file or file
format is a set of user-defined fields of different kinds; these fields
determine the pattern into which the entered data will be organized.
(In SQL terms the file formats are called “tables.”) The file is the
blueprint, as it were, for the recurring structural entity. When the
structure is filled with data, the concrete realization of this entity is
called “records.” These records are placed sequentially according to
a system that allows them to be searched.

The “shoe box” analogy
Figure 1 illustrates the realization of the concept of
files, records and fields. Think of a little shoe box
filled with cards, where the names and addresses of our
friends are written down (one person per card); this
describes the data in a file format, which in turn is the
blueprint for how each card is supposed to look. The
file format is also the basis for the way in which the
data that is written in should be structured. When the
end-user fills the fields with data, he or she is actually
creating records in the datafile, one record at a time. So
each card in the box in Figure 1 is a collection of rec-
ords; these correspond to a set of values that fit the
fields that were defined in the file format. In Omnis
more than one file can exist at a time, and these are
stored in a datafile, which can be likened to a large
trunk filled with a number of smaller boxes with cards.

The Database ngine Data Structure 3

Datafile

Name

Addr.

Tel.

My Friends

File format

FieldsRecord

Fig. 1 The database terms in a shoe box

4 Data Structure The Database Engine

Structure of Data on Hard Disk

All information written in by the user is stored on the hard disk and
is part of a dynamic system on four levels:

1 Datafiles

2 File formats

3 Records

4 Fields

This breakdown into datafiles, file formats, fields, and records gives
the data a spread of four dimensions. In other words, it takes four
indexing (pointing) “bits” of information to arrive at a specific value.
You must know which datafile, which file format, which record, and
which field leads to just the bit you are looking for. This means that
all the information is spread out in a network of indexes, where you
can get hold of it in a flash.

The first three dimensions are more or less stationary and are
changed only as needed; the fourth dimension is specified in each
instance (Entry fields or calculations). In what follows we shall look
more closely at each of the four levels.

The Database ngine Data Structure 5

Datafiles

In Omnis 7 v2.x, several datafiles can be open at the same time.
Unless the developer has stipulated that a file format belongs to a
specific datafile, Omnis will store the data in the datafile currently in
use. This is called Floating datafile mode. With the aid of the ‘Set
current datafile’ command, the developer decides which datafile
shall be used, just as with Main file.

Datafiles

Fig. 2 How the datafiles might look in “real life”

Controlling the flow of data
A file format can be linked to a specific datafile by
using the ‘Set default datafile’ command. After this
command has indicated which file formats belong to
which datafiles, Omnis will direct the data to the right
datafile, regardless of what Current datafile is at that
moment. The Current datafile setting is not affected.
See the chapter entitled “Datafiles and Libraries.”

Datafiles and CRBs
Each datafile has its own independent CRB with its
own Main file. This holds true even if a number of
datafiles are using the same file formats. The field
names are distinguished from each other with the help
of the datafile’s name. If the ‘Unique Field names’
option isn’t crossed off in ‘Preferences,’ the name of
the file format must also be given. These three names

6 Data Structure The Database Engine

are separated by a period. The full field name will read
as follows:

datafile.fileformat.fieldname

If the datafile is not given in the exact form shown
above, Omnis will favor the field that belongs to the
CRB for the current datafile. The developer is free at
any time to use fields from all the datafiles, provided
he uses the full names.

The Database ngine Data Structure 7

File Formats

The datafiles consist of data entered in accordance with the pattern of
the file formats. The latter determine the appearance of the records.
File formats act as “templates” for how the datafile is organized and
how the information is read in. A file format is the definition of a set
of fields, their field types, and whether they should be indexed or
not. The fields within a file format are identified by the order of their
number in the file format window.

Main file

There are some commands that affect only one file at a time. They
need to know which file this is; the ‘Set main file’ command comes
to the rescue. This command tells Omnis which file you want to
work with, and this is how commands that use Main file are directed.
Apart from the foregoing, the command has no other effect, either on
the fields or their content. The following commands need to know
Main File:

• Clear main file

• Clear main & connected

• Prepare for insert

• Prepare for insert with current values

• Delete

• Delete with confirmation

• Build list from file

• Find

• Prompted find

• Next

• Previous

8 Data Structure The Database Engine

Main file and CRB
In Omnis we navigate through the CRB by indicating
which file format we are working with at any given
time. The ‘Set main file’ command is only a pointer,
however, and has no other effect to begin with. It’s
only when one of the Main file-oriented commands is
executed that the Main file setting will have an
important role to play. It then determines which file
will be affected (the file contents, that is).

Most other commands are not concerned with what
Main file is set to. The ‘Calculate’ command, for
example, is completely independent of Main file and
can combine fields from everywhere without any
restrictions.

The Database ngine Data Structure 9

Records

Records can be thought of as the individual “cards” in the shoe box
archive (datafile) shown in Figure 1 at the beginning of this chapter.
When the fields in a file format are filled up with data by the user (or
retrieved during import), the field values taken as a whole will
constitute a record. Records are, in a word, a collection of the field
contents within a file format as the file is being updated (saved to
disk). If the user only fills in a few fields before the record is saved
to disk, the record will only consist of data from these few fields. If,
however, the user fills in all the fields, the record in the datafile will
consist of a complete set of values from all the fields in the file
format. The records are the finished product; the file format is the
“recipe.”

10 Data Structure The Database Engine

Fields

File formats consist of fields whose contents are usually stored on
disk in the form of records. Fields that are only present in memory
are called “variables.” What both types of fields have in common is
the fact that their contents (text, numbers, etc.) stay put until they are
actively modified by a command. They may also be edited by the
user or the developer, typically under Enter data, or by means of the
Field Value window. The field type (text, number, etc.) determines
the type of information the field will contain so that the former can
be handled effectively. Omnis filters all data that is about to be
entered in the fields, and does not allow the entry of any information
that is incompatible with the given field type. The different types of
fields are described individually in the chapter entitled “Field
Types.”

The fields as drawers
We may regard fields as “drawers” that can be filled
with values. The drawers themselves are of less
interest than what they contain. Drawers can be
emptied and filled and their contents copied from one
field to another. When a field is empty, it has no
length, and the expression ‘len(EMPTY_ FIELD)’ will
be equal to 0.

The relationship between window fields and fields in memory
In Figure 3 I’ve tried to pictorially describe the
relationship between the memory (containing the
CRB) and the fields as they appear to the user. The
windows only reflect the values of the fields in
memory every time the window is redrawn. If the field
values change, the window won’t show the changes
until the next redraw.

Let us imagine that the CRB lies hidden behind the
windows and that every time a window is redrawn, the
CRB sends the needed field values to that window.
Windows act as a kind of shell surrounding a core –
the CRB; moreover, they behave much like pictures on

The Database ngine Data Structure 11

a wall. Both show a lot but have no real content. The
“live” fields (and the actual content) reside in the
memory, behind the windows.

Memory

Fig. 3 A freshly redrawn window shows the contents of the CRB.

Redrawing windows
When fields are placed in windows, what we actually
see are copies of the fields that are in memory. The
field values in the CRB may very well change as the
procedures are executed. It would be nice if the
window fields were constantly updated; but as this
would only slow things down unduly, Omnis has left
this in the hands of the developer, who can update the
window fields at just the right time using the various
Redraw commands.

We are not restricted to fields from the same main file
in a window, even though this is often advisable. As
the values in the CRB change, we can update the
window by executing a ‘Redraw windows’ command.

12 Data Structure The Database Engine

Indexes

What is an index?

We may regard an index as a list that shows the order of all the
records in a file format in a given datafile. When the index is
constructed, the records are sorted according to the field to be
indexed; the order is alphanumerical. When a field is indexed, Omnis
can use the index list to do a binary search (a very quick search
method). Moreover, indexes can be used as pre-sorted sequences
when printing out reports, during export procedures, etc.

(In reality, an index is a “tree structure” in which each branch
represents an index element embedded in the relevant part of the
index.)

Building indexes

Consider the following practical example. We start with the field
definitions:

Field name: Type:

1 RSN Sequence Ind
2 NAME Text Ind

We write in 10 names in this file format. Every time a file is updated
(by using the ‘Update files’ command), Omnis finds the last
sequence number (RSN) in the file and increases this by one. Thus
the RSN shows the chronological order in which the names were
entered.

The Database ngine Data Structure 13

Index for
NAME

No.
1
2
3
4
5
6
7
8
9

10

RSN
3
8
7
5
6
9
10
1
2
4

NAME
John
Judith
Annie
Kenneth
George
Hallvard
Geir
Bjørn
Heinrich
Isabelle

Annie
Bjørn
Geir
George
Hallvard
Heinrich
Isabelle
John
Judith
Kenneth

Datafile

RSN
1
2
3
4
5
6
7
8
9

10

Input Alphanumeric RSN is
inserted into

data sorting the index list

Fig. 4 Building an index

The index for NAME is constructed as the field is sorted
alphanumerically, after which Omnis finds the related RSNs; thus
the numbered list of RSNs constitutes the index. As new records are
entered, Omnis places them in the various index lists where the field
values belong, thus updating the indexes continuously.

Indexation during run-time
In reality, indexing takes place continuously as new
data is entered. To illustrate the principle more clearly,
we let indexing take place in the example above only
after the first 10 entries. (This situation can arise if a
field is set to be indexed after a certain number of
records have been entered. During re-indexation, the
process is approximately as illustrated above.)

14 Data Structure The Database Engine

Indexes spread over several fields (v2.x)

I Omnis 7 v2.x, indexes may be constructed from a number of fields.
This is useful when many of the same values recur in the data for a
given field and you wish to continue the sorting in another field. The
developer defines indexes with the first, second, third, (etc.) field to
be sorted within the same index. Within the index list, the order of
entries having exactly the same values in the first field of the
combined index will be arranged according to the alphabetical order
of the next field in the “index field list.” That’s quite a mouthful, so
let’s take a breather here:

Typical examples are fields such as FIRSTNAME and SURNAME.
It is customary to sort according to surname; unfortunately for us,
however, there are many people with the same surname. If we only
follow the index for SURNAME, the order of persons with the same
surname will be identical to the order of the RSN. This is rarely ever
correct. In this case the best thing to do is to employ a combined
index for SURNAME, which will consist of SURNAME followed
by FIRSTNAME. Then everyone whose surname is “Smith” will be
sorted further by their first name.

Binary search

The reason that fields which are indexed can be searched so rapidly
is due to the use of what we call a “binary search.” When a character
field is indexed, this means that the content in the fields is sorted in
the same sequence as the current character set (for example, ANSI).
Here each letter has a number, and the numbering is alphabetical.
With the aid of the character set, Omnis can ascertain whether a
word is “larger” or “smaller” than another word. A word that is
“larger” begins with a letter that has a higher number than the word it
is being compared with, i.e. the initial letter of the “larger” word is
farther along in the alphabet. If both words begin with the same
letter, the next letter in each are compared.

Logic principle

Binary searches exploit this by extracting a value embedded in the
area of the datafile it is searching in. If the text to be searched (the
word the search is trying to find) is larger than the value it extracts,
this means that the desired record is in the bottom half, i.e. after the

The Database ngine Data Structure 15

value being extracted. If it is smaller, this means that the record is in
the upper half of the area being checked, i.e. before the value being
extracted from the sequence. This process continues until the field of
search is narrowed down to one record per line, after which the
search is terminated.

Practical example

The datafile contains 10 records with first names sorted
alphabetically. The index for the field FIRST_NAME will be as
shown below. We want to find “Frank.”

No. RSN
1 5 Annie

3 7 Benny
2 3 Art

4 2 Chris
5 6 Dinah
6 9 Frank
7 10 George
8 1 Ian
9 8 Kelly

Index for FIRST_NAME

Frank

10 4 Lars

Fig. 5 Searching for Frank, first try

Our first comparison is with record 5 in the index list. Here we see
that “Frank” is larger than “Dinah,” so we can concentrate on the
bottom half of the index list.

16 Data Structure The Database Engine

No. RSN
1 5 Annie

3 7 Benny
2 3 Art

4 2 Chris
5 6 Dinah
6 9 Frank
7 10 George
8 1 Ian
9 8 Kelly

Index for FIRST_NAME

Frank

10 4 Lars

Fig. 6 Searching for Frank, second try

We had to choose between records 7 and 8 in the index list, since it
would be pointless to try to extract records from between the index
lines. Our comparison shows that “Frank,” being smaller than
“George,” must lie in the top half of the search field. (The search
field is between the two gray lines in Figure 6 .)

No. RSN
1 5 Annie

3 7 Benny
2 3 Art

4 2 Chris
5 6 Dinah
6 9 Frank
7 10 George
8 1 Ian
9 8 Kelly

Index for FIRST_NAME

Frank

10 4 Lars

Fig. 7 Found Frank on third try!

The Database ngine Data Structure 17

Binary versus linear search

Binary searches require few comparisons to find the right record.
Linear searches (which are used with the ‘Search list’ command)
usually start from the top and work downward, one line a t a time. If
the amount of data should increase by one record or one line, a linear
search will usually have to do an entire comparison again. Binary
searches only do another comparison when the amount of data is
doubled. This has a dramatic impact on the quantities of data that the
various search methods can practicably cope with.

Linear search

Binary search

No.
of accesses

to datafile

No. of records

Fig. 8 Comparison of binary and linear searches

As we see in Figure 8, a binary search can handle, in practical terms,
far larger amounts of data than a linear search can. The work Omnis
does in maintaining your indexes is sure to pay off.

Binary searches on lists
When a list has already been sorted, a binary search
should prove to be a useful alternative to the ‘Search
list’ command. True, the programming involved is
somewhat complex, but it is manageable, and the
increase in speed is welcome. See the chapter entitled
“Lists and Tables.”

18 Data Structure The Database Engine

The Function of the Internal Memory

Every computer is amply endowed with a volatile medium of
logically oriented transistors, which is often called Random Access
Memory (RAM), otherwise known as the “internal memory.” This is
the arena in which a computer can spread its wings, as it were. All
data, i.e. everything that is routed through the CPU, is assigned to
specific addresses in RAM. Later the data is retrieved, modified,
compared, sifted, moved, measured and weighed, and restored. All
this takes place at incredibly high speeds. Theoretically, it is possible
to use stable storage media (e.g. hard disks); but not only do these
run too slowly, they wear out too quickly.

The contents of RAM can disappear
When the power supply is cut off, everything in the
internal memory vanishes. This is why we need a
stable storage medium (diskette or hard disk) for
storing a partially compressed copy of what we had in
RAM. Diskettes and hard disks, as we know, do not
need a power supply to retain information.

An arena for both “tools” and “products”
What the user does with the aid of the computer, i.e.
writing letters, making drawings, composing music,
typing columns of figures, etc. is assembled in the
internal memory. This is done using a variety of
programs, which also reside in the internal memory.
Every program is allotted a portion of the total internal
memory when the computer is booted. Omnis fills this
space partly with its own program code, but leaves the
rest for windows, graphics, field values and lists, etc.

Other parts of the allotted space are used for different
kinds of buffers, i.e. temporary auxilliary storehouses
whose task is to enhance the execution of a number of
commands. Efficient use of the internal memory is a
key element in any good program. Omnis is no
exception.

The Database ngine Data Structure 19

How the Internal Memory is Organized

The rest of the memory

File D

#-Variables

#L1

#1
Import buffer

File E

Memory Only-files

Local variables

Format variables

#2

#3

Report buffer

List buffer
Redraw buffer

File A File B File C

CRB

Fig. 9 Simplified diagram showing the organization of the non-code
part of the memory allocated by Omnis

Current Record Buffer

Current Record Buffer (CRB) is a major concept in Omnis. CRB is
defined as the content of all fields in all files (those to be stored on
disk), i.e. all those fields from which the file formats are constructed.
Data entered by the user generally winds up in the CRB. In the figure
above, the Memory Only files are outside the CRB. We will come
back to this later. CRB has two characteristics worth noting. The one

20 Data Structure The Database Engine

concerns the combination of records, the other concerns the updating
of the datafile.

Combination of records
When a record in a given file is found with the ‘Find,’
‘Next’ or ‘Single file find’ commands, its fields are
filled with the relevant data. CRB thus becomes a new
combination of field values within the file formats. As
shown in the figure above, we can regard the CRB as
an assortment of cards, one from each stack.

The CRB and ‘Update files’
One of the guiding principles in Omnis is the way in
which it updates files. All files are updated in one fell
swoop when an ‘Update files’ is executed. When
updating is performed by the ‘Prepare for Insert’
command, a new record is established in the main file
slot, while the records in the rest of the CRB are saved
to disk in their present form. For these files the old
version is replaced by the new. With ‘Prepare for Edit’
the old version of the record (on disk) is replaced with
the new version (in RAM) for all the files. This method
of updating enables us to modify records in all kinds of
files under the same Enter data and subsequently carry
out a collective updating for all the files.

Memory Only files
In practice, fields in files which are eventually set to
Read/Write will be given the most attention during
CRB evaluations. Fields in Memory Only files are
never saved to disk. In this respect they differ very
little from hash variables. Nevertheless, technically
speaking they are a part of the CRB. In Figure 9 I’ve
chosen to place Memory Only files on the outside,
because it will be helpful to regard the CRB as that
which is being written to disk when an ‘Update files’
command is executed.

Read Only files

The Database ngine Data Structure 21

The contents of Read Only files are never saved to disk
by ‘Update files.’ This is how these files differ from
other files in the CRB. Read Only mode is a means of
protecting files against modification. You can prevent
all other files except one from being updated by setting
these to Read Only. This is advantageous in multi-user
environments, as it can prevent records from being
locked. See the chapter on multi-user applications.

What does it mean that a record is in internal memory?
The ‘Test for current record’ command tests solely
whether a record has been stricken in its entirety or
not, i.e. whether it has been assigned a hatch in the
internal memory. No matter how much of the field
content is deleted or altered, this test will not be
affected. However, we can only be absolutely certain
that all the field contents of a record exist in memory
just after a successful search has been carried out, or
just after the user has entered the data for a new record.
By “just after,” we mean before other procedures are
executed which contain commands that modify the
CRB.

(To be sure that the information going into a datafile
contains what it should, these tests in the field
procedures should be run as the user inputs the data.
The use of field procedures is the most orderly way to
go about checking the contents of the fields.)

The rest of the memory

Along with the CRB, the internal memory consists of various buffers
and variables, each with their own separate functions. The intention
here is to avoid unnecessary field changes in the CRB.

Import buffer
The import buffer receives data from the port or import
file before it is distributed to the various fields in the
CRB. This takes place with the aid of the ‘Import data’
or ‘Import field from file’ commands.

22 Data Structure The Database Engine

Variables
The variables contain values just like the fields do, but
their content is not saved to disk. The developer may
create his or her own variables (local, format and
library), or use those that already exist, i.e. #hash
variables.

Redraw buffer
The redraw buffer contains the value that a field had
the last time it was redrawn (either with a redraw
command or by the user placing the cursor in the
field). The redraw buffer is used as a basis for
comparison for determining #MODIFIED.

Report buffer
The report buffer is used in building reports. It
contains what is ultimately presented as the report
itself, including text, graphics, field values, and what
have you.

List buffer
The list buffer is used in the building of lists so that the
CRB isn’t altered when Omnis searches through the
datafile, record by record.

The Database ngine Data Structure 23

Fil BCRB, Datafile 3

Fil BCRB , Datafile 2

File A Fil B File CCRB , Datafile 1

File A File C

File A File C

Fig. 10 The true complexity of CRBs

Several datafiles in memory (v2.x)

When several datafiles are open at the same time, each of them has
its own CRB, even if they are coupled with file formats and fields
with the same name. All the fields in all the datafiles can be accessed
by including the name of the datafile in each field name, separated
by a period. For that matter, each individual datafile is generally
connected to a library with its own file formats and related fields.
This opens the way for better modular programming, where each
library can have its own function and datafile. Different modules can
thus be tailor-made to fit the need.

Backup and security

Using several datafiles can be quite useful when making backup
copies – in fact, when protecting your data in general.

Saving time and storage capacity
A complete backup of an entire datafile can take hours,
even with speedy hard disks and tape streamers.
Backups must be made frequently and represent a great
deal of boring work, even though the backup routine
can often be automated. One way of minimizing this
work is to separate volatile data from stationary data

24 Data Structure The Database Engine

and put them in their respective datafiles. This will
spare you from “dead weight” being repeatedly backed
up without change.

If lots of new data is being produced continuously and
the old data is only being kept for storage and for “just
in case,” you can shunt data that is no longer used into
special datafiles. For example, you can program your
application in such a way that it creates a new datafile
for each year. It’s a simple matter to choose the
datafile that fits the year: just look at the registration
date.

Security
Highly sensitive data can be sectioned off into separate
partitions or hard disks that are well-protected from
hackers. This is usually not necessary, however,
because Omnis’ datafiles are coded in such a way that
they can’t be easily read by disassemblers or other
low-level editors.

qCHhcq
Better method in your madness than madness in

your method.

qCcq

The Database ngine Data Structure 25

Variables

Local variables

Local variables are variables that can only be used in the procedure
in which they were created. They exist only as long as the procedure
is running. When the procedure is finished, both the content and
definition of the variable vanishes from memory. In v3.x you can set
the initial value directly in the variable declaration.

Viewing the contents during the run
During debugging you will notice that all the local
variables are empty when the procedure has finished
running. To see the content of variables at the end of
the procedure, you can insert a breakpoint just after the
last procedure line; the procedure will halt before it is
completed, and the variables will remain intact.

Areas of use
Local variables are invaluable for clarifying
complicated procedures. You should try to replace
hash variables with local variables in most situations,
because the latter can be given meaningful names.
This, in turn, will ease the programming process
considerably and free you to concentrate on the logical
problem in the procedure, instead of your having to
remember a sequence of numerical variable names
(those nasty #-variables).

User-defined constants
It’s also wise to replace key numbers in the procedure
with local variables so that they function like
constants. In calculations this applies to any number
that you’re not sure about (for example, if the fixed
value happens to change). If the number has to be
changed at a later date, you won’t need to insert the
correct figure yourself; all you’ll have to do is change
the value of the constant.

26 Data Structure The Database Engine

Format variables

Format variables can be used freely within the same format. This
means that the format variables in a window are visible to all the
procedures in that window; the same goes for menus. The content of
these variables is retained until they are actively deleted, or until the
“owner” format is closed (if the ‘Clear format variables when closed’
option has been set). The declarations (the ‘Format variable’
commands) may be collected in a separate procedure, all in one
place. Format variables work like local variables, but they hold the
edge when other procedures are called.

Initializing values
Format variables must often be set to null or set to
departure values at the beginning of the procedure.
This is necessary in order to ensure that the value is
what you want it to be. It can happen, for example, that
another procedure from the same format has just been
run and you have forgotten that both procedures make
use of (some of) the same variables.

Limitations
The disadvantage of format variables is, not
surprisingly, that they do not exist for other formats.
This can throw a monkey wrench into everything if,
for example, we want to print out a report from a
procedure in a window or a menu. The format
variables from the menu or the window will not be
visible to the report format. Here you must resort to
global variables.

Global variables

Global variables are variables that are visible to the entire
application. One example is the fields in Memory Only files. These
are visible for the “owner” library, but can be reached from other
parts of the application as well. You can assign meaningful names to
the fields, preferably within a common file format called, for
example, “fVariables.”

The Database ngine Data Structure 27

Areas of use
Certain options, internal information, lists, settings,
etc. that the developer wants to refer to in many
different procedures and formats (and wants to keep
from being used where they shouldn’t) are prime
candidates for global variables. Moreover, such file
formats are handy to have if you need the kind of
variables that are not covered by the group of hash
variables – for example, date fields, time fields or
picture fields.

Library variables
In Omnis 7 v2.x and 3.x there are also Library
variables. These are visible to all the formats within a
complete library and are defined in the same way as
format- and local variables.

Manipulating variable declarations

Whether you are used to defining all the variables in a procedure
before programming begins or prefer doing so as you go along,
sooner or later a situation is bound to arise in which you’ll want to
change them a bit.

Changing name or type
All types of variables and fields are referred to in the
procedures by a hidden number, not by their names.
When a variable is created, it is added to an internal
“file format,” which functions much like a regular file
format. That’s why it’s easy to change the name of
every variable: just edit the name directly in the
declaration command (‘Define local variable,’ for
example), and Omnis does the rest.

Deleting variables
If you’ve created a slew of variables that you later find
you have no use for, you will quite naturally want to
get rid of them. But it’s not enough to delete the
declaration commands. The variables are retained in
memory until ‘Remove unused variables’ is selected

28 Data Structure The Database Engine

from the ‘Modify’ menu. But then the undesired
declarations ‘Define local variable,’ ‘Define format
variable’ or ‘Define library variable’ must first be
deleted and the variables in question must not be used
anywhere in the procedures. To track down all the
occurrences, use ‘Find and Replace’ with ‘Field
names’ checked off. When you have used ‘Remove
unused variables,’ you can check the result by looking
at the ‘List field names’ window. If the variables do
not occur here, this means that they are no longer in
memory, provided the correct format (and the correct
procedure) are in view.

Perhaps this sounds complicated. It is sufficient to
enter a definition to create a variable. (You never have
to run the procedure line.) Why, then, go to so much
bother to delete a variable? The answer is that this is
how it works best in practice. Creating a variable is
much easier and less risky than deleting one, because
deleting a variable can render one or more procedures
completely unrecognizable – and thus useless.

Moving the declarations
When we try to move a variable declaration with the
aid of cut and paste, something happens that not
everyone appreciates: Reinserting the declarations is
interpreted by Omnis as an attempt to create new
variables with the same name as the old ones. The
existing variables are still in memory, even though the
declaration commands themselves have been deleted
by using ‘cut’ from the ‘Edit’ menu. The new variables
are given the same names as those that already exist,
plus a “1” (or the lowest number that makes the names
unique).

In v2.x (and v1.3) you can delete the number at the end
of the names. This is interpreted as a new declaration
of the old variable (without the numeral appendage),
and the connection is re-established. We can breathe
easy. Finally, all we need to do is delete the unused
variables hidden in the memory (for example,
Lo_Counter1, Lo_Length1, Lo_Height1, etc.), which

The Database ngine Data Structure 29

we achieve by selecting ‘Remove unused variables’
from the ‘Modify’ menu.

Hash (#) variables

In Omnis we have a fixed set of variables, all containing names that
start with the symbol #. These are called “hash variables.” They are
pre-declared and may not be removed from memory. Some are also
“read only,” which means that even the developer cannot modify
their content. Hash variables can be subdivided as follows:

Editable variables (“Value” variables)

These are the familiar variables that everyone uses now and then
when they need a variable or counter of some kind.

#1…#60: Number variables
These may be formatted with decimals by adding “D,”
followed by the desired number of decimal places.
Example: #1D2 (two decimals), #1D3 (three
decimals), etc.

#L1…#L8: Lists
Quite useful when you need a list in a hurry, for
example in procedure testing or as a buffer in a
calculation. But lists presented in windows should be
declared specially; then they will be left undisturbed
by other procedures.

#S1…#S5: Text variables
The built-in text variables take up to 32,000 characters.
Their most important use is in procedure testing.

Enter data messages (Read Only)

This is a large collection of variables dominated by Boolean and
‘“read only” fields. They tell nearly everything about what the end-

30 Data Structure The Database Engine

user is doing under Enter data. Some are also activated outside of
Enter data.

#BEFORE, #AFTER, #CLICK, #DCLICK, #TOTOP, etc…

The Database ngine Data Structure 31

Operating system variables (Read Only)

A handful of variables provide information gleaned from the
operating system. Examples of these are #T – time, and #D – today’s
date. You can’t change the contents of these variables.

Internal Omnis variables

This group consists of many variables that are useful to Omnis and
developer alike. Key information about fields, printouts, etc. is
collected for the developer, and some of the variables can also be
manipulated.

#L, #LN, #LM, #LSEL
These are the list parameters for each list in memory.
#L, #LSEL and #LM can be manipulated.

#FDP, #FD
Default presentation of number fields and date fields in
windows and reports.

#UL, #MU
User level in the Omnis security system and in a multi-
user network, respectively.

#ERRCODE, #ERRTEXT
Error code and explanatory text. Can be tracked for de-
bugging.

#R, #P
Number of printed records, and page numbers in the
report.

This is not an exhaustive list. The examples above are intended to
illustrate what different groups of hash variables contain.

32 Data Structure The Database Engine

Transferring values between applications

Hash variables exist in memory as long as Omnis is running; this
means that they can be used to transfer values from one application
to another. Hash value variables are also useful because they are so
practical. They are always available, and for really short procedures
you will rarely use so many of them as to make them hard to keep
track of. For testing purposes, hash variables are hard to beat.

Conclusions

Hash variables occupy a central place in Omnis’ scheme of things.
They are virtually in constant use, and I reckon that most developers
will know them like the back of their hands. However, if it’s been a
long time since you made their acquaintance, there is no shame in
consulting “Reference 1.”

The Database ngine Data Structure 33

Parameters and parameter passing

When you set out to write general procedures, which is an art in
itself, you naturally want them to be adaptable to some extent. And
the product of a procedure is often a value that is placed in different
fields each time the procedure is called. Global variables might help,
but they tie up the programming and make heavy demands on the
developer’s memory. For these problems, parameters are the answer.

What are parameters?
A parameter is a local variable in a (general) procedure
that receives its value from another procedure that calls
it. Omnis sees to it that values are automatically passed
between the correct procedures. The value for the
parameter is sent over when the ‘Call procedure with
return value’ command is executed. The field provided
in the command is the drawer that receives the value
that is sent back when the procedure that is called has
finished. Commands that may pass values to para-
meters are the following:

Call procedure (F_Field1,F_Field2)
Call procedure with return value (F_Answer, F_Field1,F_
Field2)
Open window (F_Field1, F_Field2) ;; Sent to the 0-
procedure
Install menu (F_Field1, F_Field2) ;; Sent to the 0-
procedure

F_Field1 and F_Field2 contain the values we wish to
send, and F_Answer will receive the result. (The “F”
only means “File” here.) We may replace the fields
inside the parentheses with actual values. Bits of text
are enclosed in quotation marks (" "), as follows:

Call procedure pProcedures/15 (35, "Some text") {Text-handling
procedure}

Values to be used in the general procedure are received
in the order in which the parameters are declared.
When the general procedure has finished running, the
parameters vanish from memory.

34 Data Structure The Database Engine

The return value
As previously stated, the procedure that does the
calling will receive a value in return. Any field in such
a procedure, provided the field is the right type, may
receive a return value from the general procedure. A
field is designated as the waiting receptor in the
procedure that does the calling with ‘Call procedure
with return value.’ In the general procedure a calcu-
lation is set as a return value with the aid of the ‘Set
return value’ command. We may place fields,
numbers, and calculations in the calculation line. The
product of this calculation, when the procedure is
finished, is passed to the waiting receptor field in the
procedure that did the calling. The value ends up safely
in the designated field, “sent” from the ‘Set return
value’ command, and “received” in the ‘Call procedure
with return value’ command line.

Calling procedure 1

Local variable First_Value (Short number 0 dp)
Local variable Second_Value (Short number 0 dp)
Local variable Here_is_the_Answer (Short number 2 dp)

Calculate First_Value as 10
Calculate Second_Value as 20

Call procedure pParameters/2 {Resource procedure} with…
…return value Here_is_the_Answer

OK message {The answer is [Here_is_the_Answer]}

The calling procedure (1)
The field ‘Here_is_the_Answer’ serves as a drawer
that waits politely in the procedure to which it belongs.
Omnis handles the transport to and from the
procedures.

The Database ngine Data Structure 35

pParameters/2 {Resource procedure} 2

Parameter Numerator (Short number 2 dp)
Parameter Denominator (Short number 2 dp)

Set return value {Numerator/Denominator}

The procedure that is called (2)
When the procedure is finished, Omnis passes the
product of the calculation in ‘Set return value’ to the
procedure that did the calling. Note that we do not
need to use global variables to carry out the parameter
passing, nor do we need to remember which procedure
did the calling. These commands solve an annoying
problem in a rather elegant way.

To sum up

The main facts about parameter passing are as follows:

Transferring values to a resource procedure:
The values are placed within parentheses (in ‘Call pro-
cedure,’ for example) either directly or by means of
variables. The receptor fields are determined by
‘Parameter’ commands in the resource procedure.

Transferring values back to the procedure that does the calling:
The calculated value to be returned (there is only one
per procedure) is determined by the ‘Set return value’
command. The receptor field is already designated in
the ‘Call procedure with return value’ command. The
value is sent when the procedure is finished.

36 Data Structure The Database Engine

qCHhcq
Show me your variables, and I’ll tell you who

you are.

qCcq

Field Types &
Their Function

Introduction.. 2
Text Fields .. 4
Number Fields.. 6

8-bit numbers
32-bit numbers
64-bit numbers
Conversion of text into numbers
#NULL

Boolean Fields.. 10
#NULL and Empty
Boolean fields in windows
Search formats and calculations
Language differences
Using Boolean fields with “record templates”

Date Fields.. 15
Main date field types
Units in Date fields
Interpretation of text
The year range in Short dates
Calculations with dates
Presentation in windows and reports
Archeological dates

Time Fields .. 21
Picture Fields .. 22

Memory requirements
What is a suitable medium?

Lists.. 25
Large lists
Lists in file formats

Binary Fields .. 27
Values
Binary fields in notation

Sequence Fields .. 28
How Omnis assigns RSNs
Areas of use
Resetting the RSN
RSN and import

2 Field Types & Their Function The Database Engine

Introduction

When defining a variable or a field in a file format, you must always
designate the field type, which determines the type of data for which
the field will be used. For example, to register the day a record was
entered, we must use a Date field. On the other hand, if the field is
intended to show the price of a certain model of car, it is advisable to
let the field be of the “integer” type (meaning “whole number”); such
numbers rarely ever have decimals.

We could have registered all the information as free text to start with,
since this is a simple and straightforward way for your computer to
receive data. But then we wouldn’t have been able to do any
calculations on them. In some cases, free text would take up more
space; and in any event, it wouldn’t be possible to store information
in the form of pictures, lists, etc.

Filtering data to be entered
The field type serves as a kind of filter for data that is
entered by the user (or imported). The purpose behind
distinguishing between different types of data is to get
the most out of the internal memory, make it possible
to do calculations on field values in a reasonable way,
and to act as a middleman between user and computer.
The field type provides a backdrop of rules for the
kinds of values that are allowed and those that are not.
Date fields are typical examples of this. For example:
if the user enters text that Omnis is unable to interpret
as a date, Omnis will react with a beep, signifying that
the input data has not been accepted. This minimizes
entry errors markedly.

Filtering data to be read from disk
The field type also works the opposite way. When the
value of a specialized field is loaded from disk, it is
translated and displayed in a form that the user can
easily interpret and understand. On the diskette, all
data is present as number codes in the form of ASCII
or ANSI characters. Thus a field type is a recipe for
how letter characters are to be translated from (and to)

The Database Engine Field Types & Their Function 3

ASCII/ANSI before they are presented to the
developer or user. Text (and integers) need no special
translating, whereas dates, numbers containing
decimals, and images must be interpreted and
processed according to specific rules before the content
can become useful. Let’s now take a closer look at the
way specific field types are defined, the amount of
memory they require, and how they function.

4 Field Types & Their Function The Database Engine

Text Fields

Text fields accept all kinds of characters that can be entered from
any kind of keyboard, and stores them without modification.
(Exceptions to this are, of course, TAB, ENTER, RETURN, and
similar functions keys.) The length that is specified in the field
definition is the limit for how many letters the user will be permitted
to type in, not how much actual space the field occupies in the
memory. One of the advantages in setting an upper limit on the
number of characters in a field is to encourage the entry of brief
codes with a predetermined number of characters – or, quite simply,
to force the user not to write so much. Memory requirements will
depend on how much text is present in the field at any one time (1
byte per character). So all the text fields in the file definition can be
set to their upper limit. Fields don’t take up so much room, either on
the hard disk or in the internal memory. Nevertheless, you can save
room by actively deleting variables that contain lots of text when
they are no longer needed. In v1.x, the upper limit is 32,000
characters; in v2.x (and 3.x) you can have up to 10 million charac-
ters. (The latter represents approximately 15 times the number of
characters there are in this book!) This means, among other things,
that we can insert relatively large text files directly into text fields
and process them with Omnis’s procedure commands afterwards.

ASCII
On the hard disk, all information is stored as characters
in a “character coding” system. ASCII is an
internationally recognized alphabet consisting of 255
“letters” (i.e. characters). The letters of the alphabet are
stored in 8-bit format, i.e. eight 1’s or 0’s are required
to identify a letter. For every letter there is a
corresponding number. ASCII contains every letter in
the English alphabet as well as all the numbers (digits),
most national characters for foreign languages, many
special characters, and a number of control characters
(new line, tabulator, new page, etc.). The precise
definition is fixed, but different programs and
machines nevertheless deviate slightly from the
standard, especially with regard to little-used
characters. For example, Macintosh uses a variation of

The Database Engine Field Types & Their Function 5

ASCII where the special “foreign language” characters
in particular have a non-standard placement.

ANSI
Windows utilizes ANSI, which is also an 8-bit
character code system. The sequence of special
characters is different from that in ASCII. This
inconsistency is dealt with by Omnis during all
conversion between platforms, however. The relevant
character sets reside in the file called ‘Omnis 7.ini.’
The difference between ASCII and ANSI is significant
for SQL, and we will return to this in a later chapter.

The National and Character field subtypes
The National and Character field subtypes determine
how the field is sorted when indexes are built. The
National fields are sorted with upper and lower case
versions of the letters in lettered pairs, with upper case
first {A, a, B, b, C, c…}, whereas Character fields are
sorted in the order of the relevant character set
{A, B, C, D…a, b, c, d…}.

As a rule, information is written into a text field with a
capital letter at the beginning of the first word; the
information is often in the form of sentences or names.
If the user forgets to start with a capital letter, the
record in question will “vanish” to the end of the index
if the field type has been set to Character. In later
searches, it will appear as though the record has been
deleted. To avoid this situation, we set such fields to
National. (It is rarely appropriate to sort fields accord-
ing to ASCII, so we can just as well set all the text
fields to National.)

6 Field Types & Their Function The Database Engine

Number Fields

Number fields refuse everything but numbers, commas, and minus
signs. The field type may be specified further, depending on how
large the numbers are and how many decimals they contain. The
basic definition is related to how much room the field types take up
in the internal memory, expressed in terms of the number of bits.

8-bit numbers

Eight-bit integers lie between 0 and 255. In other words, the range is
limited; on the other hand, the field only takes up 1 byte. This kind
of field cannot store numbers with decimals. Fields that are displayed
with Radio buttons may be of this type.

32-bit numbers

This format occupies a bit more space – 4 bytes – but also has a
much larger range. The first 30 bits are used for the number itself;
the remaining two bits indicate whether the number is negative or
not.

Long integer +/- 2 billion

Short number 0dp +/- 1 billion minus one (9.99 x 108), whole
numbers.
Short number 2 dp +/- 10 million minus one (9.99 x 106), two
decimals.

64-bit numbers

The 64-bit format is the largest; it takes up 8 bytes. The exact range
depends on the number of decimals and the number of relevant
digits. The numbers shown below should really be subtracted by one,
but for the sake of simplicity they have been rounded off to the
nearest exponent:

The Database Engine Field Types & Their Function 7

Number Floating +/- 1.0x10100 No. of decimals
varies 15 valid digits

Number 0dp +/- 1.0x1015 whole number all valid digits

Number 1dp +/- 1.0x1014 1 decimal all valid digits

Number 2dp +/- 1.0x1013 2 decimals all valid digits

Number 3dp +/- 1.0x1012 3 decimals all valid digits

Number 4dp +/- 1.0x1011 4 decimals all valid digits

Number 5dp +/- 1.0x1010 5 decimals all valid digits

Number 6dp +/- 1.0x109 6 decimals all valid digits

Number 8dp +/- 1.0x107 8 decimals all valid digits
Number 10dp +/- 100,000 10 decimals all valid digits
Number 12dp +/- 1000 12 decimals all valid digits
Number 14dp +/- 10 14 decimals all valid digits

Larger numbers
Numbers with greater accuracy or greater range must
be put in text fields. As we are talking about extremely
large numbers, however, for most people this
limitation is academic.

Conversion of text into numbers

If you use Text fields inside calculations in which the answer is
expected to be a number, Omnis automatically converts the contents
of the Text field into a number. The conversion process follows these
rules:

• Depending on whether your computer has been set to use a period
or a comma as the separator between whole numbers and
decimals (i.e. in decimal numbers), the content is interpreted
accordingly. The text “12,231” is interpreted (by Omnis) as the
number 12231.00 if the decimal separator is a period.

• If the Text field contains a minus sign (regardless of where it is in
the field), the number is interpreted as a negative number.

• The plus sign is ignored.

• If the Text field contains characters other than those mentioned
above, then the value of the field is interpreted as 0.

8 Field Types & Their Function The Database Engine

#NULL

If the ‘Can be Null’ option has been selected, the Number field may
also have the value “undefined” (termed #NULL in Omnis). This
means that the field has not been touched, either by the end-user or
in calculations. It is sufficient to place the cursor in the editing field;
the value of the number field will be replaced by “0” or by the
whatever number is written in. There is no value ‘Empty’ for
Number fields; it is synonymous with the number 0. (“Empty” means
that the field is saying that there should be no value here.) In open
windows, the #NULL value and the number 0 will both be repre-
sented by the character “0.” This likeness, however, is only skin-
deep. In procedures we can search for records in which the field
value has not been written in.

Example: Temperatures
As an example, take the recording of temperatures.
Here the number 0 has meaning, because it is an
acknowledged temperature. Records with a field value
“temperature of 0” and records with untouched fields
will both appear the same in the windows. If the end-
user, having placed the cursor in the editing field,
subsequently discovers that the temperature was not
recorded for that day, we should then set the field’s
value to #NULL. This would mean that the record has
not been considered at all, as far as this field is
concerned. We can set the value to #NULL using a
‘Clear range of fields’ command. If we do not do this,
the temperature will be recorded as “0.” On a hot
summer day it’s highly unlikely that this represents the
reality of the situation! You can read more about
#NULL in the paragraph on Boolean fields.

(If we had used a Text field, we could have set the
field to value ‘Empty’ by using ‘Calculate FIELD as
"".’ The value ‘Empty’ would mean that the record for
this date has been considered, and it was found that the
temperature measurement had in fact not been
recorded at the weather station, – in other words, the
real-life information does not exist.)

The Database Engine Field Types & Their Function 9

#NULL in procedures
For some reason or other, we cannot locate those
records in which the number field has the value
#NULL by setting the search criteria
‘FIELD=#NULL.’ Instead we must exploit the fact
that #NULL is sorted as an absolute zero, i.e. before
the lowest value possible for the relevant number field.
We can look up the range a particular field type has, or
use a negative value chosen at random. This value
must be totally different from whatever might be
entered. If we want to look up unregistered
temperatures, we may set the search criteria as follows:
‘TEMPERATURE < -100.’ This will give us all
unregistered temperatures (#NULL), but it will also
yield erroneous entries (unless, of course, we have
been gathering data from the far side of the moon!).

Insert as 0
If we have a field that is allowed to have the value
#NULL (i.e. “undefined”), it will get this value at the
outset. It will keep this value through ‘Update files,’
provided the editing field in the window has not been
touched. This applies, however, only if the ‘Insert as 0’
option has not been selected in the field definition. If it
has, Omnis will insert the number “0” when a ‘Prepare
for insert’ command is executed. Thus the field re-
ceives the number “0,” even though the end-user has
not touched the window field. If the user wants the
field to be undefined, this must be done in some
procedure, using the ‘Clear range of fields’ command.

10 Field Types & Their Function The Database Engine

Boolean Fields

Boolean fields may be compared with electrical switches in the sense
that both have two possible values: Yes or No (or 1 or 0, on or off,
man or woman, etc., as the circumstances dictate). Boolean fields
occupy 8 bits in the memory. They are often used in Check boxes.

Areas of use
In every situation where there are only two possible
choices, Boolean fields are always a good one. For
example: Man/Woman, Yes/No, Vacant/Occupied, etc.
Typical areas of use are “course” type divisions, but
then you must be sure that the division is not
broadened to include more than two choices.
Nevertheless, if such a thing were to happen, it
wouldn’t be hard to get out of this bind by composing
a little conversion routine. Running such a routine on
larger amounts of data is time-consuming, however.

#NULL and Empty

In practice, these fields have several possible values: Yes, No, Empty
and #NULL. An empty Boolean field signifies that the value is
unknown; thus it should be neither Yes nor No. On the other hand, if
the value is #NULL, this means that the field has never been touched
by the end-user or used in any calculation since the record was
established (or since the variable was declared). Thus #NULL means
that the field contains no information whatsoever, and so it is often
called “undefined.” To get #NULL values in Boolean fields, you
must have selected ‘Can be Null’ in the File format. (The ‘Insert as
empty’ option should also be turned off.)

Example
Let’s look at an example involving a poll. Imagine that
your assignment is to ask 100 specific people in a
company whether they had ever had a backache.
Furthermore, let’s say that of these 100, you were

The Database Engine Field Types & Their Function 11

actually able to poll 80. Five answered Yes, 65
answered No, and the remainder (5) couldn’t remem-
ber. As you know that 20 were not asked, they get the
value #NULL. Five people had had a backache and 65
hadn’t. Naturally, these two groups get the values Yes
and No, respectively. The last 5 people couldn’t
remember whether they had had a backache or not.
The value for these is Empty. We would be justified in
assuming that these people probably had a careless
attitude toward their own health – which, however, is
not the same as not having been asked! (#NULL)

#NULL is usually not discernible
Having explained the difference between #NULL and
‘Empty,’ we should also mention that Omnis makes no
distinction between the two in its calculations. A
Boolean field that is calculated as #NULL apparantly
behaves as if it were Empty in most contexts. There is
one difference, however; #NULL is lower than Empty
in the sorting sequence. We can exploit this fact in
Search formats (see below).

The easiest way to differentiate in a clear manner is to
create our own codes. In the foregoing example it
would have been simpler to use a Short integer field in
which, for example, 0 meant “Not registered,” 1 meant
“Don’t know,” 2 meant “No,” and 3 meant “Yes.”
With the aid of Radio Buttons, the system would be
easy to use.

Boolean fields in windows

Within windows you usually encounter Boolean fields in Check
boxes or in Radio Buttons. You click on Check boxes so that the “X”
appears inside the box. Then the value is Yes. If the value is to be
No, you must first click and bring up the “X,” and click it again to
make it disappear. If the field is left untouched, the value will be
#NULL (provided the ‘Insert as 0’ option is not checked off.) For
Radio Buttons you need two (in Window field sequence),
representing the values 0 and 1. The values will be No and Yes,
respectively. The black bullet pops up in the Radio button

12 Field Types & Their Function The Database Engine

representing “No,” whether the value is No, Empty, or #NULL. To
get the value to be Empty, it must be deleted by a procedure
containing ‘Calculate FIELD as "".’ To get the value to be “No,” you
must click on the Radio button for “Yes,” and then on “No.”
Alternatively, you can use the command ‘Calculate FIELD as 0.’

Search formats and calculations

To pick the values Yes, No, Don’t know (Empty), and Not asked
(#NULL), we have to know the means we have at our disposal. The
order of values is as follows (from lowest to highest):

NULL, Empty, No, Yes

Suggestions for search criteria and their interpretation are summed
up in this table:

Test: Finds:

If BOOLEAN<"" NULL Not registered
If BOOLEAN="" EMPTY Answer non-
existent
If BOOLEAN=0 NO No
If BOOLEAN=1 YES Yes

If BOOLEAN<0 EMPTY and NULL Ambiguous
answer
If len(BOOLEAN)=0 EMPTY and NULL Ambiguous
answer
If BOOLEAN>=0 YES and NO Clear answer
If len(BOOLEAN)>0 YES and NO Clear answer

If BOOLEAN<>1 NO, EMPTY and NULL Not positively
If BOOLEAN<>0 YES, EMPTY and NULL Yes or “Not
denied”
If BOOLEAN<>"" YES, NO and NULL Not ‘Empty’
If BOOLEAN>="" YES, NO and EMPTY Only registered
records

Language differences

The Database Engine Field Types & Their Function 13

Within calculations the content of the calculation field is interpreted
in terms of the nationality of the particular version of Omnis you
have. Different languages have different words for “Yes” and “No,”
which is only natural, and Omnis must make allowances for this. To
avoid any discrepancies between different versions, the numbers 1
and 0 should be used. These are interpreted correctly by all the
versions and can be used both in procedures and reports.

Using Boolean fields with “record templates”

In many situations you can save both time and work if you use a pre-
constructed template when entering a record. This template contains
text that fits a typical record in the file in question; this content may
be inserted when a new record is created. The user makes needed
changes, and then saves it as an ordinary record. Such templates are
particularly convenient when there are large amounts of monotonous
text in the data.

The “Template flag”
We can insert a system of templates by creating an
indexed Boolean field in the file format. Example:
“L_Letter_is_ Template.” (The “L” is an acronym for
the filename fLetters.) By using this field, normal
letters are distinguished from “letters templates.” To
locate the letters that will serve as a general point of
departure for the actual letters, you merely conduct a
search with ‘L_Letter_is_Template=1.’ Since the
templates and the records are in the same file, any
changes in the File format will affect both. The
templates and the actual letters will not be confused
because we will have used L_Letter_is_Template as a
flag in order to distinguish between them. There is no
extra burden on the internal memory, and the
programming goes surprisingly smoothly. (All you
need to do is turn the flag L_Letter_is_Template on
and off at the right places.)

The template title
If the File format does not have a text field that is
suitable as a template name (for example, the letter’s

14 Field Types & Their Function The Database Engine

title), such a field should be established. (Example:
‘L_TemplateName’). Without a descriptive title or a
separate name, the user won’t know what the template
actually contains.

The Database Engine Field Types & Their Function 15

Using the templates
By setting ‘L_Letter_is_Template=1’ as a search
criterion and building a list that is sorted according to
L_TemplateName, we will be able to view all the
templates in the file. Template names may be shown to
the user in the form of a list. The template is selected,
is located in the datafile, and the content of the
“template record” is used by a subsequent ‘Prepare for
insert with CV’ command (CV = Current values).

16 Field Types & Their Function The Database Engine

Date Fields

Date fields are number fields in which the content is converted to
day of week and date before being presented to the user. Date = 0
signifies AD (actually, December 31, the year 0). Date = 1 signifies
January 1, the year 1; subsequently the days are counted until the
year 9999.

Main date field types

Date fields can be divided into two main types: Short date and Long
date. They differ a bit, so we’ll take a brief look at each of them.

Short date
Short date fields always have “days” as their minimum
unit, and they require 4 bytes.

Long date
Long date fields contain a point in time with a
precision of up to 1/100th of a second, in addition to
the date. The field requires 8 bytes. The minimum unit
depends on the field definition.

Units in Date fields

The subtypes of the Long date fields determine the minimum unit in
terms of which the date field will be treated. For example, if this unit
is 1/100th of a second, allowances must be made for this fact in
every calculation. Look at the results in the following table:

Format Calculation Result

Date D m Y DATETIMEFIELD+3 3 days later
Date D m Y H:N DATETIMEFIELD+3 3 minutes
later
Date D m Y H:N:S DATETIMEFIELD+3 3 seconds

The Database Engine Field Types & Their Function 17

later
Date D m Y H:N:S.s DATETIMEFIELD+3 3/100 sec.
later

It is clear here that calculations with the date field are
wholly determined by the way in which they are
formatted. When only calculating with Short date
fields, Omnis always uses days as the minimum unit,
so you shouldn’t run into this problem here.

Interpretation of text

When translating a text segment into a date (or date with time), the
following rules must be observed:

• In calculations, text that is enclosed in quotation marks (" ") will
be treated just like text enclosed in parentheses in the ‘dat()’
function. Sheer numerals (i.e. numbers without quotation marks)
are grabbed without further translation and must therefore
numerically represent the correct date, counted from year 1. It is
rarely ever advisable to assign integers to date fields, because this
will mask a field’s true value and make the procedures or reports
harder to read and debug.

• Any character that can be written (not including control
characters) may be used to separate the day, the month, and the
year. (You don’t usually need to separate the day, the date, and
the year.)

• The first two connected numbers (characters before the first
number are ignored) are interpreted as the day. The next two
connected numbers are interpreted as the month (In American
versions, the reverse is the case.)

• If the year is omitted, Omnis will choose the current year. If both
the month and the year are omitted, Omnis will choose the current
month. Both “01” and “0107” become June 1 1994, if this is
today’s date.

• An attempt will be made to reinterpret values that exceed the
natural limits for day and date. Example: “440312” will be
interpreted as December 3, 1944.

18 Field Types & Their Function The Database Engine

The year range in Short dates

Subtypes of the Short date fields tell us how the date is to be
understood, if the text by which the date is interpreted does not
contain information about any century. Example: “12/3-67” will be
translated as March 12, 1967 if the date field is of the type ‘Short
date (1900-1999).’ If the field had been of the type ‘Short date
(1980-2079),’ the date would then be translated as March 12, 2067.
If we type in “12/3-1967,” all doubt will be eliminated.

Calculations with dates

In general, Date fields can be used the same way that Number fields
are used in calculations. In practice, however, you will only need
subtraction (and possibly addition). The inverse integral of dates
doesn‘t contribute very much that is useful. We’ve already seen that
the formatting of the specific Date fields determines the unit in terms
of which it will be reckoned. Calculations operate in terms of the
minimum unit of all the fields that appear in the calculation. The
field with the minimum unit determines, in other words, how any
isolated numerals should be interpreted. When the calculation is
completed, the answer is inserted in the receptor field (date or string)
in ‘Calculate DATE as,’ with the time, day, and year in the right
place. If the receptor field is a number field, the date will be
converted to a number that is expressed in terms of the unit used in
the calculation (for example, seconds or days).

#1 = Days between dates 1

Calculate ShortDate1 as "Jan 01 1990"
Calculate ShortDate2 as "Jan 10 1990"
Calculate #1 as ShortDate2-ShortDate1
; **** Answer: #1 is 9 ****

No. of days between two dates – Short date format (1)
If we want to find out how many days there are
between two dates, this is no problem at all, provided
both dates have days as their minimum unit. We can
use a simple number field to receive the date, as shown
in Procedure 1. Here, the difference in days is placed
in #1.

The Database Engine Field Types & Their Function 19

Using a Short date field as “converter” 2

Calculate LongDate1 as "07.Feb 90 20:15:15"
Calculate LongDate2 as "07.Apr 90 21:15:15"
Calculate ShortDate as LongDate2-LongDate1
Calculate #1 as ShortDate
; **** Answer: #1 is 59 ***

No. of days between two dates – Long date format (2)
However, it sometimes happens that we use Long date
fields that include time, and the minimum unit might
be seconds. Using the method above, we get the
answer expressed in terms of seconds. Not many of us,
however, would be interested in having 9 days
expressed in terms of seconds; we would have trouble
relating to the result! We must convert the date values
from the minimum unit to the desired unit. We can do
this ourselves (by dividing 86400 (60 * 60 * 24) if it is
seconds). But it’s easier to let Omnis do it for us. We
need a Date field with days as the minimum unit in
order to complete the translation of the two date
formats. See Procedure 2.

Days and hours
The field LongDate2 is 2 months and 1 hour after
LongDate1. The number of days is calculated correctly
on the basis of the specific months we’re talking about.
The exact time is disregarded; only whole days are
counted. If, however, we wish to show how many
hours there are beyond the number of days, we may
use the ‘jst():’ function. This is all shown in Procedure
3 below:

The # of days and hours between two Long dates 3

Local variable DifferenceDate (Date D m Y H:N:S)
Local variable NoOfDays (Long integer)
Local variable NoOfHours (Long integer)

Calculate LongDate1 as "02.Feb 90 20:15:15"
Calculate LongDate2 as "02.Apr 90 21:18:15"
Calculate DifferenceDate as LongDate2-LongDate1
Calculate ShortDate as DifferenceDate

20 Field Types & Their Function The Database Engine

Calculate NoOfDays as ShortDate
Calculate NoOfHours as jst(DifferenceDate,"T:H")
; ***Answer: NoOfDays is 59, and NoOfHours is 1 **

Taming the Date field beast
By using the function ‘jst(…"T:H"),’ we get the time
portion of the date DifferenceDate. This will be
satisfactory for all situations, because the time value
we get in Procedure 3 is always less than 24 hours. It
would not have worked to use ‘jst(…"D:D")’ to get the
number of days from DifferenceDate, because the
number of days will exceed the total number of days in
a month. The “date” DifferenceDate has the date value
“February 28, 0001,” and so the value of
‘jst(DifferenceDate, "D:D")’ will be 28! If you count,
you will find that this date is 59 days away from
December 31, 0000, which is day 0 for Omnis.
Therefore we use the date field ‘ShortDate,’ and get
the time period expressed in the proper unit.

Calculating # of hours between two long dates 4

Local variable Hours (Date DMY H)

Calculate LongDate2 as "05 Mar 90 20:15:15"
Calculate LongDate1 as "06 Mar 90 21:18:19"
Calculate Hours as LongDate1-LongDate2
Calculate #1 as Hours
;*** Answer: #1 is 25 ***

Number of hours (4)
We can use the same technique with hours. But then
we need a Long date field (not Short time; it has an
upper limit of 24 hours), in which the minimum unit in
the date format is hours. Before running Procedure 4, a
new date format, ‘DMY H,’ must be added, with
which we will format the local variable ‘Hours.’

The Database Engine Field Types & Their Function 21

Presentation in windows and reports

The subtypes of Long date fields tell us how the various date fields
should be displayed in windows and reports. The subtypes
determine, for example, whether the month shall be written out in
full, whether the number for the century shall be included, etc. This
can also be controlled with the aid of ‘jst(L_DATE;"D:…")’ in each
instance.

Archeological dates

Dates before Christ (B.C.) must be stored in Text fields or Number
fields and be interpreted by the developer. Another option is to use
regular Date fields, but then the developer must make allowances for
the reverse calculation (the higher the number, the older the date);
and somewhere in the application it must be made unequivocally
clear that the dates preceed year 0.

22 Field Types & Their Function The Database Engine

Time Fields

Time fields (Short Time) resemble Date fields; they are 2-byte
(number) fields representing the number of minutes that have elapsed
since midnight. Translation takes place in the same way as for Date
fields, and follows these rules:

• In calculations, the text that is enclosed in quotation marks (" ") is
treated just like text enclosed in parentheses in the ‘tim()’
function. Sheer numerals (i.e. numbers without quotation marks)
are grabbed without further translation and must therefore
numerically represent the correct time, expressed in terms of the
number of minutes past midnight. It is rarely advisable to assign
integers to time fields, because this masks the time field’s actual
value and makes the procedures or reports harder to read and
debug.

• The first two connected numbers are interpreted as time.
Remaining numbers are interpreted as minutes.

• Every character that can be written (not including control
characters) may be used to separate hours from minutes (or
1/100ths of a second, for that matter). In fact, it is not really
necessary to separate hours from minutes, minutes from seconds,
and so on.

• “PM” or “AM” placed anywhere in the text segment prescribes a
12-hour interpretation. Default is a 24-hour interpretation.

If you wish to register seconds or hundredths of a second, you must
use the Long date field. See the paragraph on Date fields.

The Database Engine Field Types & Their Function 23

Picture Fields

Picture fields are designed especially for pictures (images); naturally
they may not in themselves be used for calculations or searches. The
purpose of these fields, when it comes right down to it, is solely to
display drawings, pictures and figures for the user, as well as to
receive (via ‘Paste’ or ‘Paste from file’) and store them. When the
these fields are used in windows or reports, you may choose between
displaying a reduced version of the entire picture, or just a section
thereof, in the event that the picture’s borders exceed the size of the
field. Generally speaking, information residing in the picture field
can’t be presented in any other type of window field. In addition, all
image modification must be done using external routines.

Memory requirements

Pictures, by their very nature, hog memory and they put a distressing
load on our poor old computer. The most demanding tasks for any
machine involve various forms of image handling. The crux of the
problem is the enormous amount of graphics information, especially
when it’s in “bitmap” format. (Bitmap images consist of a mosaic of
miniscule squares in a variety of colors.)

Resolution
The memory requirements depend on the picture’s
overall area and the number of colors that are
employed. As you may know, every image, when
scanned, is translated from its natural, analog form
(with “infinitely” large resolution) to an artificial,
digital form in which a set resolution is employed. The
process involves placing a hypothetical grid (or
“netting”) over the screen; each square in the netting is
assigned the color that fits best. The higher the
resolution, the finer the mesh, and the more the digital
image will resemble the analog one. But you pay a
high price in the form of dramatically increased
demands in terms of hard disk space.

24 Field Types & Their Function The Database Engine

Calculating space requirements
Each “square” in our hypothetical netting is called a
“pixel.” Every pixel corresponds to a single point on
the screen. Monochrome images contain only all-black
and all-white points, each point taking up 1 bit in the
memory (which is what we would expect). Such an
image makes demands on memory according to the
following formula:

Bytes =
[Horizontal pixels] x [Vertical pixels]

8

The figure 8 in the denominator of the fraction is there
because there are 8 bits in a byte. We see that the
demands on memory increase proportionately with the
size of the image (both horizontal and vertical).

Colors
On the other hand, if we want color, each color must
be numbered. Each point is assigned a number that
states which color it has. This number becomes a kind
of color code. If each point receives a 2-bit number,
the points may choose from a list of 4 colors (for
example: White=00, Black=01, Blue=10, and
Red=11). This means that a 2-bit picture may display a
maximum of 4 colors. The number of bits in the code
used by the points to designate their color is called
“pixel depth.” For color images we derive the
following formula for memory requirements:

Bytes =
[Horizontal pixels] x [Vertical pixels] x [Pixel depth]

8

An image with a measely 4 colors requires twice as
much memory as its monochrome counterpart. For
reasonably realistic color images, 256 colors are not all
that much. Remember that every nuance of color and
gray-tone is defined as a separate color; and in
shadows, soft edges, and overlapping transitions, there
are a great many such nuances! 256 colors requires 8
bits per pixel, which increases the demands on memory
by a factor of 8. To the human eye, a pixel depth of 8

The Database Engine Field Types & Their Function 25

is ridiculously small. It’s only when the concentration
increases to 24 bits that picture quality even begins to
approach photographic quality; moreover, the demands
on memory are correspondingly astronomical. A 24-bit
picture with 512 x 512 pixels (about 18 x 18 cm at 72
dots per inch) requires 6 megabytes. True photographic
quality requires a pixel depth of 32 bits.

What is a suitable medium?

These are all factors you should bear in mind when planning how to
include pictures in a database. Though Omnis manages images quite
efficiently, high-capacity media are nearly always needed. For larger
libraries of pictures, you must resort to hard disks in the gigabyte
class, or even to CD-video (Video disk).

26 Field Types & Their Function The Database Engine

Lists

Generally speaking, a list can be compared with an empty sack. We
know what it’s name is and what it’s for, but not what it contains.
The list is only ready to be used when the exact fields it is to contain
are defined in a procedure. Each line in the list contains a value
corresponding to the fields that once gave the columns their titles (in
‘Define list’). Thus the list becomes a kind of “mini”-database, in
which the lines correspond to records.

Large lists

The upper limit for how many lines a list can contain is
circumscribed by the amount of memory available at any given time.
(In Omnis 5, the limit was 30,000 lines.) For lists to be shown to the
user, this is not the practical limit. Large lists take too long to build,
are cumbersome (too much scrolling), and tend to saddle the user
with the work of searching for a record in a file. This negates the
list’s usefulness. It was never the intention that lists should be used
as mirror images of big files. If you get lists with lines that can be
numbered in three digits, it’s time to pause and reflect on the
usefulness of your list and try to recall what you originally had in
mind. As a rule, limiting the number of lines in the list from which
the user shall choose should pose no problem. (Use a search!) The
application will “look its best” when as much of the file as possible
is kept on the hard disk.

Lists in file formats

Lists defined in file formats are stored together with the other data in
the file format (that is, provided the File format has been set to
‘Read/Write’). The list definition, #L, #LM, #LN, selections, and the
‘Save selections’ buffer are all stored, along with the values in the
list lines themselves.

A fourth dimension
From a programmer’s point of view, this opens up a
whole new world of advanced data processing, because

The Database Engine Field Types & Their Function 27

we get a 4th dimension in which to index data; and if
we reckon with differing datafiles as a dimension,
we’re up to 5 dimensions (and now you’ve lost me!).

Other aims
Lists on which we do not intend to perform rapid
searches, and which do not change very much, may be
stored in file formats. This is an alternative to file
connections in which the linked records are merely
added chronologically and where there is no need to
analyze the “connections” within a given time frame.
This is particularly true of large datafiles with a huge
number of connections, in which case it will be a lot
quicker to retrieve lists directly from disk than to build
them separately. You can read more about this in the
chapter entitled “Lists and Tables.”

qCHhcq
Lists are a developer’s best friend.

And the best part is: unlike Fido, you don’t even
have to walk them!

qCcq

28 Field Types & Their Function The Database Engine

Binary Fields

Binary fields contain untreated, “raw” data stored with no fuss. This
field type is designed to be used by external routines, and its content
cannot be displayed by Omnis. Omnis assists the external routines by
administrating large amounts of data – which, after all, is its forté.
The point of all this is to pave the way for other types of data, e.g.
sound and video for presentation and processing, and to secure an
uncomplicated integration of external routines with the Omnis
database engine.

Values

Binary field values themselves are not displayed. However, Omnis
does inform you whether the fields are empty or contain values. This
is ascertained by using the OPT/RB menu (click on the name of the
Binary field), as well as the Field Value window.

Binary fields in notation

Certain attributes in the notational system are in binary format. This
applies, for example, to $formatdata and $datadict. For processing
these it’s useful to have suitable fields for this kind of data.

The Database Engine Field Types & Their Function 29

Sequence Fields

Sequence fields contain the Record Sequence Number (RSN). This
number is assigned to each and every record that is inserted, and is
unique for each one. In any case, as the RSN exists in the memory, it
costs nothing to define a Sequence field. You may alter the contents
of such fields, but the changes are never stored in the datafile. Where
it concerns RSNs, Omnis is in the driver’s seat.

How Omnis assigns RSNs

The first record to be created in the file is assigned RSN = 1. The
next record is assigned RSN = 2, etc. If a record in the file is deleted,
the number for that record is not reused, and the numbering of the
other records is not changed. Thus the highest RSN does not
necessarily indicate how many records the file contains. On the other
hand, it does tell us how many times a new record has been added to
the file. (You get the number of records in the file using the ‘sys(83)’
function.)

Areas of use

Fields defined as sequence fields provide the programmer with a
convenient opportunity to do something useful with the RSN. Here
are some of the possibilities:

• Making a sure identification of the various records. There is no
danger of confusion in Single user systems, and minimal risk in
multi-user systems. We get a rapid and unambiguous search for
very specific records.

• Creating serial or invoice numbers in applications in which it is
impossible to delete records. If the user is allowed to delete
records in the file, the developer may still accept RSN as the
serial number, provided the numbers don’t have to follow each
other in unbroken succession.

30 Field Types & Their Function The Database Engine

• Showing the chronological order in which records were entered
and the number of new records that have been inserted all
together.

• Finding the record most recently inserted.

TIP: Always define a sequence field, even if you suspect you’ll
never use it. Sooner or later you will need the RSN, for
example, in order to recover a specific record.

Resetting the RSN

When a file format slot in a datafile is deleted, the RSN for this file
format is reset to 0. (Use the dialog box ‘Examine datafile’ in the
‘Utilities’ menu.) If there are copies of the deleted datafile, and these
copies are reused, we run the risk of getting different records that
share the same RSN.

RSN and import

During an import, the RSN that accompanies the main file will be
disregarded, and new RSNs will be assigned (as with a regular
‘Insert’). This, in turn, affects the import and export of hierarchically
connected files. See the chapter entitled “Import and Export.”

qCHhcq
Care in your choice of field types

 will assure you of an efficient file structure.

qCcq

File Connections

In General. 2
Types of Connections .. 6

Hierarchical connections
Relational joins

Different Ways of Linking Files .. 7
One-to-One
Many-to-one
One-to-many
Many-to-many

Commands for Editing Data in a Datafile .. 12
Prepare for insert
Prepare for edit
Delete
Update files
Update files – Do not cancel pfu

Modifying Contents in a File of a Higher Level
 while Modifying Another File .. 15

Theoretical solution
Practical solution
Expanding the system

2 File Connections The Database Engine

In General

File connections are used a great deal to simplify data storage when
working with databases. Much has been explained about this
technique, and many find it difficult to understand. Basically, we are
dealing with an attempt to mirror the way information is organized in
the real world. We are used to information being linked in some way
and we are used to having to know the context in order to understand
it. If a friend asks you over for dinner at six o’clock, you already
know where it is, who else might be coming, and what to expect. The
information “dinner at six” is connected to other data which you
already possess about your acquaintances. If you hadn’t recognized
your friend, this information would be unintelligible.

Avoiding repetition
The beauty of file connections is the fact that certain
types of data inherently belong together. When making
the connections, we sort the data by groups and thus
avoid saving all kinds of information on top of itself
and continuously repeating ourselves. If we were to
register all the inhabitants in a certain geographical
area, they would all share the same information
concerning weather conditions, public facilities, etc. It
makes no sense to key in this information together with
each name. It’s more efficient to separate data that is
often repeated, store it in a file, and then link each
inhabitant’s individual data with the shared data.

Child files and parent files
When we discuss file connections, we are talking about
a possible link between two independent file formats.
In principle, one file will contain data that is unique to
the file, while the other one will contain more general
information that can apply to a number of files. We
often call the first file the “child file,” which is where
most of the data is entered. The other file is called the
“parent file,” where we place the shared data; the
various records in the child file are then linked to the
appropriate records in the parent file. Each connection

The Database Engine File Connections 3

consists of one record in the child file, which is linked
to one record in the parent file. A file will often be
linked to several other files. This enables a record in
the child file to be linked to one record from each of
the parent files.

The nature of linking
Such links are uni-directional. A record knows which
record it is linked to, whereas the latter is not aware
that other records have “attached themselves.” The
child file records have appropriated a name or a
number, which they use to point out who their parents
are in the superior files. Using the parent–child
analogy, we can say that the child record knows its
father’s or mother’s name. Its father is in the parent file
“Fathers,” and its mother is in the parent file
“Mothers.” When the child looks up its mother’s name
in the “Mother’s” parent file, it will soon find out who
she is, where she lives, etc. Likewise, the child will be
able to do the same with its father’s name. However,
neither the child’s mother nor father know each other,
nor do they know their own child. Of course, we’re
being somewhat cynical in using a model in which it is
the child who holds the family together.

The connection itself
In reality, a connection (or link) is based on an item of
information that identifies a record in another file that
is stored in a separate field in the first file. The data
must serve as an identifier. For example, if a person is
given an identification number, this number must be
unique to that person. This number can be used when
linking, because it can be used to locate a particular
person. The child–parent example used the parents’
name for identification purposes. We can call the name
fields in each parent file F_FATHERS_NAME and
M_MOTHERS_ NAME. They function as identifying
fields, also known as “key fields.” Each name was
copied and saved in its own field in the child record.
Let us call them C_MY_MOTHER and
C_MY_FATHER. These fields are often called foreign

4 File Connections The Database Engine

keys. The entire link is based on the content of these
fields.

The Database Engine File Connections 5

Visualizing the file connection
Figure 1 shows us how the linking procedure can be
visualized. The sequence number C_RSN belonging to
parent file fCompany is saved as a label on all the
connected records in the child file fCustomers.

F_RSNK_RSN
K_FORNAVN

K_ETTERNAVN

K_RSN
K_FORNAVN

K_ETTERNAVN
K_RSN

K_FORNAVN
K_ETTERNAVN

K_RSN
K_FORNAVN

K_ETTERNAVN

K_RSN
K_FORNAVN

K_ETTERNAVN

F_RSN

K_RSN
K_FORNAVN

K_ETTERNAVN

F_RSN

K_RSN
K_FORNAVN

K_ETTERNAVN

F_RSN

K_RSN
K_FORNAVN

K_ETTERNAVN

F_RSN

K_RSN
K_FORNAVN

K_ETTERNAVN

F_RSN
F_RSN

36
Baldrick
Cutting-Edge

5

fCompanies

parent file

fCustomers

child file

K_RSN
K_FORNAVN

K_ETTERNAVN
F_RSN

F_RSN
F_RSN

F_RSN

21
Sheela
Johnson

Dalila Hair-dresser
Samson Avenue 332

C_RSN
C_NAME

C_ADDRESS

U_RSN
U_FIRSTNAME
U_LASTNAME

U_RSN
U_FIRSTNAME
U_LASTNAME

foreldrefil
C_RSN

C_NAME
C_ADDRESS

K_RSN
K_FORNAVN

K_ETTERNAVN
K_RSN

K_FORNAVN
K_ETTERNAVN

K_RSN
K_FORNAVN

K_ETTERNAVN
U_RSN

U_FIRSTNAME
U_LASTNAME

U_C_RSN

5U_C_RSN

5U_C_RSN

Fig. 1 Visualizing a file connection

6 File Connections The Database Engine

Figure 1 shows that the records in fCustomers have a
small, extra label where the U_C_RSN field has been
placed. This is the foreign key from the fCompanies
file. Wherever we wanted to create a link, we have
copied the value of the fCompanies’ identifying field,
C_RSN, to the foreign key U_C_RSN. The record
found in fCompanies has a C_RSN value of 5. We also
find this number in the foreign keys of the two records
linked in fCustomers. The value of U_C_RSN is also
5, thus establishing the link.

The Database Engine File Connections 7

Types of Connections

Hierarchical connections

Omnis uses hierarchical connections to eliminate most of the
programming work involved in file connections without adversely
affecting flexibility. When creating hierarchical connections, the
Record Sequence Number serves as the identifying data for the
foreign keys. Omnis generates this number itself, so the user (or
developer) will be less likely to mess things up. The developer
doesn’t actually see the foreign keys; Omnis takes care of organizing
foreign keys and copying values. When you need to refer to the
foreign key, you may use the name of the field containing the
sequence number. As long as the main file is set to the child file,
Omnis will understand the difference.

Connected fields in windows
Moreover, the linked record in the parent file will be
retrieved automatically when ‘Find’ is used to locate a
record in the child file. Fields from the parent file can
be placed in the same window as the child file, with
the linked data being shown together with the data in
the child file.

Relational joins

The developer uses relational joins in Omnis to control the
connection itself. Connected files are not retrieved automatically,
making it necessary to type in a bit more code. On the other hand,
the link is more stable, in the sense that it is more amenable to
imports and exports, since it is not dependent on RSN (see the
chapter entitled “Import and Export”). On the whole, relational joins
give us a greater degree of flexibility, as they leave more in the
hands of the developer. However, all this takes place at a relatively
advanced level. In actual use, relational joins are just as quick as
hierarchical connections.

8 File Connections The Database Engine

Different Ways of Linking Files

The fact that there are several ways of linking files allows you to
choose the option that makes them optimally suited to the data they
are to contain. What we’ll now be looking at is not specific types of
connections as such, but rather the result of how the developer
controls the way the user makes these links.

One-to-One

A one-to-one connection means that only one record may be
connected to a record in another file. Your procedures must ensure
that there are no cases of “double booking.” This is achieved by only
allowing procedures to create records in the child file and ensure the
link, with no interference from the user. A typical example is that of
an invoice (child file) linked to a task (parent file). Instead of using
one-to-one connections, we could have placed all the fields in the
same file format. This would result in our calling up much
unnecessary information, except in certain situations, e.g. printing
the invoice. Furthermore, making it easy to change which bits of
information are connected (as we can when we use file connections)
helps the developer provide the user with a means of undoing
erroneus connections.

parent file

child file

Fig. 2 One-to-One file connection

The Database Engine File Connections 9

Many-to-one

This is the most common way of linking records. Just be sure that the
parent record (to which one of the child records is going to attach
itself) is in the CRB when the file is updated. With Omnis’
hierarchical connections, key values are copied automatically,
whereas with relational joins the developer must do this himself.
(‘Calculate ForeignKey as KeyField’). Example: A club with scads
of members.

parent file

child file

Fig. 3 Many--to-one file connection

10 File Connections The Database Engine

One-to-many

A one-to-many file connection is only possible when using relational
joins. The field we use in the child file to carry out the link contains
a code that coincides with several records in the parent file. In this
case, the parent “key” field would not be unique, but would fit
several parent records. It is the procedures which must generate a list
of the linked records , which is then shown to the user. This is a
unusual type of connection, which can usually be replaced by many-
to-one connections.

parent file

child file

Fig. 4 One-to-many file connection

The Database Engine File Connections 11

Many-to-many

This type of connection requires an indirect approach. To keep our
bearings in a linking structure of this complexity, we need to make
contact with every single connection. We need to create an extra file
that links the two files and acts as a go-between. Each record in the
connector file is linked in a many-to-one connection to each parent
file. Actually, there is nothing special going on here. Each record in
the connector file is linked to a record in parent file 1 and to a record
in parent file 2.

parent file 1 parent file 2

child file
("link" file)

Fig. 5 Many-to-many file connection

Searching
We see the results of a many-to-many connection
when we count the links, keeping one of the parent
files constant. We can find out which records in parent
file 2 are linked to a record in parent file 1 by
searching for all the records in the connector file that
have a foreign key that corresponds to the record in
parent file 1. In other words, we look for all the records
in the connector file carrying the label that fits the
record in parent file 1. When we see which other labels
appear in the fields that show the links, we’ll know

12 File Connections The Database Engine

which records in parent file 2 are indirectly linked to
parent file 1.

An example
Imagine a video rental shop. Its archives contain many
customers’ names and many video tapes. Every time a
customer rents a tape, the transaction is registered.
This is a classical example of a many-to-many
connection. The customers are stored in one file and
the video tapes in another. A third file contains
information on each rental, e.g. date and price. This
rental file links the customer file to the video file in a
many-to-many relationship.

Any given customer may have rented many videos,
and any given videotape may have been rented by
many different customers. The rental file serves here as
a connecting file. The data being stored is basically the
combination of a customer ID number and a video tape
number, together with the date. Every time the video is
rented, the name of the customer and of the tape should
be read into memory and a new record created in the
rental file.

Most searches are made in the rental file, whether it’s
printing out a bill, creating a monthly budget, finding
out which customers rent what, or determining which
films are popular. For a further explanation of how to
find records using the many-to-many file connection,
see the chapter entitled “Search and Find.”

The Database Engine File Connections 13

Commands for Editing Data in a Datafile

When working on an application, the developer has to consider so
many aspects of the user interface – lists, tables, and appearance –
that he may forget the main point of the application which, basically,
is to administer and save data to disk. The commands involved in
this process are not especially complicated, but it is an advantage to
be well-acquainted with them.

Prepare for insert

This command prepares for the insertion of a new record in the main
file. This means that the fields in the main file will be cleared. Only
one file at a time can have a new record added to it. Before you can
carry out a new ‘Prepare for insert,’ you must finish the old one by
using ‘Update files’ if you wish to keep the contents of the fields.
Any new ‘Prepare for edit’ or ‘Prepare for insert’ will abort any
previous ‘Prepare for insert’ command. That’s why it is wise to take
one file at a time and to finish using ‘Update files’ before beginning
any new tasks. The ‘Test for a current record’ command will not be
true until the file has been updated.

There is nothing wrong with carrying out ‘Update files’ while still in
Enter data mode. The user will hardly ever notice anything and
won’t be able to interrupt the procedure anyway. This method can be
used, for example, when toggling between windows.

Prepare for edit

In principle, this command prepares the whole CRB for editing. In
Single user mode, the contents of CRB fields remain unchanged,
whereas in multi-user mode, the main file record is retrieved again
from disk. This results in the latest version of the record appearing in
memory. This may not match the contents of the fields just before
the ‘Prepare for edit’ command was executed. For this reason, in
multi-user mode you must assume that the contents of the main file
will “disappear” each time you carry out this command.

14 File Connections The Database Engine

The entire CRB
If the windows and their control procedures allow it,
the user can move from window to window and edit all
the data in the CRB files. When ‘Update files’ is
carried out, all the modifications, minus the files set to
Read Only or Memory Only, are saved – with one
exception: Modifications are not stored for files where
‘Test for a current record’ results in false. The entire
record is deleted from memory when the commands
‘Clear main file,’ ‘Clear main and connected,’ and
‘Delete’ (record), are given, or when failed searches
take place. This also leads to ‘Test for a current record’
command resulting in the value ‘false.’

Fields that are cleared
It’s all right to delete single fields, e.g. with ‘Clear
range of fields,’ or when the user, while in a window,
uses an entry field to delete it. The record is still
registered as being in memory, and the modifications
are saved using ‘Update files.’ In addition, you can
retrieve a record (with ‘Find,’ ‘Next,’ etc.) and edit it
between the ‘Prepare for edit’ and ‘Update files’
commands. It is only when the update takes place that
the CRB is analyzed to determine which records are in
memory; and these records are saved to disk.

Test for a current record
Even if a record has been deleted from memory, you
can still enter values into the fields. The values won’t
be saved to disk during ‘Update files,’ though. The
reason there is confusion about ‘Test for a current
record,’ and whether a record has been saved or not,
has to do with the way Omnis tests for this. Keeping a
constant record of whether every single field has been
changed or not requires too much work. Therefore,
only successful searches and an updated ‘Prepare for
insert’ or ‘Prepare for import’ will be able to establish
whether the record actually exists in memory. The
record retains this status, even though most of its fields
have been modified or deleted.

The Database Engine File Connections 15

The record won’t lose its status until a ‘Clear main
file,’ ‘Clear main and connected,’ or a failed search
takes place. This leaves us in the reverse situation.
‘Test for current record’ will still result in ‘false,’ even
though the data in all the fields is kosher. In its
defense, we can say that the test is useful despite its
limitations. In other words, in practice it isn’t
necessary to completely follow the logic in the
command’s title, because its main function is to check
whether the user or the procedure has really entered or
found a record that can be linked using a file
connection.

Delete

This command simply deletes the main file record stored on disk.
This function is irreversible. ‘Test for a current record’ will result in
false. Therefore you should always make sure that the user is certain
about carrying out this command, e.g. with a ‘Yes/No message.’

Update files

Any files set to Read/Write are updated, i.e. saved to disk. This ends
the ‘Prepare for insert’ or ‘Prepare for edit’ mode, unless something
else has been decided. The file that was prepared for a new record
(i.e. the main file) receives this new record, while the other files are
updated in the same way that they would be when a record is edited.
This happens even though the other files haven’t been specifically
prepared for editing. You can protect files against this type of
modification by keeping them in Read Only mode, or by preventing
the user from changing windows during Enter data.

Update files – Do not cancel pfu

When you choose the ‘Do not cancel pfu’ option, Omnis repeats the
previous ‘Prepare for insert’/’Prepare for edit’ command. What this
means for ‘Prepare for insert’ is that a new record is added to the
same main file that had been set during the previous ‘Prepare for

16 File Connections The Database Engine

insert.’ For ‘Prepare for edit,’ this means re-entering ‘Prepare for
edit’ mode, without specifying Main file.

The Database Engine File Connections 17

Modifying Contents in a File of a Higher Level
while Modifying Another File

When you input data for a record, this involves either creating a new
record or modifying an existing one. If the file you’re working with
is linked to another one, the (parent file) record must already exist.
But this is often not the case; the record isn’t always there. Normally
you would have to cancel (or save, with the wrong connection or no
connection at all), enter the window containing the parent file, and
add the necessary information as a new record here. Later you can go
back and correct the record in the child file. This involves a lot of
awkward maneuvering between different windows and records, as
well as having to enter some data more than once. This is a typical
file connection problem, because you are dealing with two files at
the same time. Thus it is important to make it easy to move from
editing records in one file to editing records in another.

Theoretical solution

A good solution would be to leave the child file window directly
without saving to disk, insert the missing record in the parent file,
and return to the child file window in order to continue editing,
without having altered the contents in the child file. These fields
should contain the data entered before the user left the window. Most
users would like such an option for each level upwards in the file
hierarchy, applicable to every file in the system.

Problems
The trouble with this procedure is that it leaves some
field values in danger of disappearing as the user
moves from the child file to the parent file and back
again. The commands we’ll be using will change the
CRB. ‘Prepare for edit’ retrieves the saved version of
the record when Omnis is in multi-user mode. The
‘Prepare for insert’ command always deletes the file’s
CRB. Furthermore, you must take into account the fact
that, if given the chance, the user might try to carry out
a search on one of the files. In that event, it wouldn’t
be long before all the data the user entered into the

18 File Connections The Database Engine

child file’s record had disappeared. There is a way
around this, though.

Practical solution

We use a list to save all of the fields in the main file as field names
with their respective values. Underneath each Insert button we place
an ordinary “Prepare for Insert” procedure. Just after the ‘Prepare for
insert’ command, we call up the list’s old values, exactly as the user
keyed them in. With the help of a Window Control Procedure in
every window, we can discover when the user changes windows
during Enter data mode. This is the signal for the Main file fields to
be added to the list. When the user returns to the window later and
presses the ‘Insert’ pushbutton, the old values are read from the list
and reinserted in the fields.

Setting up the procedures

The following steps show how to set up a working system that
should be able to cope with the problem mentioned above. First, we
need to prepare the window(s) for the procedures to come.

1) Sown in procedure 1 are the global variables that
are used in these procedures:

500 Library variables 1

Library variable LiLs_AllFiles (List)
Library variable Li_MainFileName (Character)
Library variable LiLs_OneFile (List)
Library variable Li_FieldName (Character)
Library variable Li_Value (Character)

2) When the application starts, the list LiLs_AllFiles
should be defined. This contains the name of the
main file, as well as a “sublist” of the field names
and field values.

The Database Engine File Connections 19

499 A•Init procedure 2

Set current list LiLs_AllFiles
Define list (Store long data) {Li_MainFileName,LiLs_OneFile}

3) Every window that is part of the system must be set
to ‘Allow clicks behind,’ and preferably not to
modeless Enter data. Each Window Control
Procedure should look something like this:

wChild/240 {Window Control Procedure} 3

If #WCLICK&#EDATA
Call procedure STARTUP/494 {C•Save values into list}
Clear procedure stack ;; Cancel old Enter data

Else If #TOTOP
Set main file {fChild} ;; The main file for this window

End If

(To avoid having several Enter data modes within
each other, we make sure that the old one has been
aborted. Thus we also avoid carrying out the extra
update that follows ‘Enter data’ in the ‘Insert’
procedure.)

4) The insert pushbutton should be set to ‘User
defined,’ and its procedure should be as shown in
Procedure 4:

wChild/8 {Insert} 4

If #CLICK
Prepare for insert
Call procedure STARTUP/497 {B•Insert Values into CRB?}
Redraw windows
Enter data

If flag true
Update files

20 File Connections The Database Engine

Else
Cancel prepare for update

End If
Redraw windows

End If

How the procedures work

Now, let’s take a look at what procedures need to be run and how
they react to the user’s input.

5) When the user clicks on one of the other windows,
Window Control Procedure receives a #WCLICK,
and the following procedure is run:

494 C•Save values into list 5

Set current list LiLs_OneFile
Define list {Li_FieldName,Li_Value}

Calculate Li_MainFileName as sys(82)
Build field names list {[Li_MainFileName]}
Redefine list {Li_FieldName,Li_Value}
For each line in list from 1 to #LN step 1

Load from list
Calculate Li_Value as fld(Li_FieldName) ;; Get the field value
Replace line in list

End For

Set current list LiLs_AllFiles
Add line to list

The Main file (‘sys(82)’) fields are placed in a short
list: LiLs_OneFile. In order to have values from
several files on hand, we place this list inside
another list: LiLs_AllFiles, together with its file
name: Li_MainFileName. After this, every line in
the comprehensive LiLs_AllFiles will consist of a
file name and a subsidiary list of field names and
values.

The Database Engine File Connections 21

6) When the user returns and presses ‘Insert,’
Procedure 6 is run just after the ‘Prepare for insert’
command in Procedure 4.

497 B•Insert Values into CRB? 6

Set current list LiLs_AllFiles
Set search as calculation {Li_MainFileName=sys(82)}
Search list (From start)
If flag true

Call procedure STARTUP/495 {B1.Insert values and remove from
list}
End If

First we search in the long LiLs_AllFiles list to see
whether the values from the main file have already
been stored here. If a line contains the name of the
main file, it means that the user has left this
particular window during Enter data, and the data
the user previously entered is stored here. Then
they should be transferred from Lils_OneFile to the
fields in the main file, using Procedure 7:

495 B1.Insert values and remove from list 7

Set current list LiLs_AllFiles
Load from list

Set current list LiLs_OneFile
For each line in list from 1 to #LN step 1

Load from list
Calculate Li_FieldName as Li_Value (Use fld() of name)

End For

Set current list LiLs_AllFiles
Delete line in list

Here we call up values from our little
LiLs_OneFile list. We are given the name of the
field and the corresponding value. Once the values
have been transferred to the CRB’s fields, we will
have no more use for the list values, which may
then be deleted.

22 File Connections The Database Engine

Expanding the system

This system can also be used with the ‘Edit’ pushbutton. All you
need to do is insert the appropriate call into the procedure, as shown
in Procedure 8. You can use as many windows as you like, as long as
all the above procedures have been included. In addition, you must
repeat the changes described in points 3 and 4 for every window.

Modified Edit pushbutton 8

If #CLICK
Prepare for edit
Call procedure STARTUP/497 {B•Insert Values into

CRB?}
Redraw
Enter data
If flag true

Update files
End if

End if

Section 4: Elements of an Application

Chapters:

1. Datafiles & Libraries

2. Sequence of Procedures

3. Lists & Tables

Datafiles & Libraries

Application Structure.. 2
A word about Omnis’ structure
Libraries (“Format libraries”)
Formats
STARTUP menu

Opening and Closing Libraries.. 5
From the ‘File’ menu
From the Format browser
From procedures
Internal names
Extension libraries

Controlling Datafiles .. 8
Two main routes
Floating file mode
Set default datafile
Summary

CRB and Data Files.. 13
Adding data to different datafiles
Reading and modifying values in different datafiles

Opening and Closing Datafiles.. 16
From the Format Browser
From procedures

Example of a Datafile Handling Procedure .. 17
Main procedure
Subprocedure: Get Path

2 Datafiles & Libraries Elements…

Application Structure

A word about Omnis’ structure

Omnis has always contained an impressive amount of repeated code.
Options are presented with the aid of the same lists, buttons, etc. that
we use in our applications. There are many unique advantages to
this, one of which is the fact that application files take up little space
in memory and on the hard disk. Considering its vast potential,
Omnis occupies surprisingly little space. Another result of this intro-
spectively logical connection is that the application file is treated in
about the same manner as the datafile. In this sense the application
file is a datafile, with indexes and “file formats” that contain the
formats we use. This helps increase Omnis’ efficiency, no matter
what the size of the project involved.

Omnis v1.x
In Omnis 7 v1.x we program applications that consist
of a number of formats we create ourselves. If we want
to use the same formats in several applications, we
have to copy them over first. The same limitations
apply to the datafiles. We can only have one datafile
open at a time and have to make do as best we can with
external lookup datafiles, which are read-only. The
application is constructed as shown in Figure 1. Each
application consists of all the formats we have created:

Application

Formats

Fig. 1 Crude application structure in v1.x

Elements… Datafiles & Libraries 3

Omnis 7 v2.x
However, this was “back in the old days.” In v2.0, both
the application and the datafile(s) were given a new
structure. The application is now broken down in the
following manner:

Application

Library 1

Formats

Library 2 Library 3

Fig. 2 Crude application structure in v2.x

Libraries (“Format libraries”)

The application isn’t a fixed entity anymore. It now consists of
whatever combination of open library files that exists at any given
time. A format library corresponds to what was previously known as
the application; the difference is that we can now have several format
libraries open at the same time. They can be run on their own as an
application or be combined as modules.

Combination of formats
As before, the library file itself is a collection of
formulas for file formats, menus, windows, reports,
and search formats. Libraries that are opened have
their menus installed beside the others. The user can
employ certain windows from one library and others
from another, and won’t notice any difference.
Loading libraries means adding new menus and
windows – and thus whole sets of new commands and
possibilities for the user. This means that the software

4 Datafiles & Libraries Elements…

we create can be constructed with building blocks. We
can offer smaller solutions for smaller needs, and
easily expand if necessary.

Formats

Most developers are already familiar with formats. There are file
formats, window formats, and menu formats with their
accompanying procedures, as well as reports and search formats. All
this is loaded into memory when needed. Each format library
consists of the sum of these resources, in addition to a number of
internal preference tables.

STARTUP menu

When a format library is opened, the STARTUP menu (any menu
format so dubbed by the developer) runs procedure 0. All initiating
procedures take place or are evoked here. It is also here that we find
the key to controlling every action the user is allowed to carry out.
For example, this is where passwords are keyed in and where certain
datafiles are linked to specific file formats. Taken as a whole, the
STARTUP/0 procedure functions as a transitional zone, which
enables the developer to ensure that the merging of new libraries
goes smoothly. We’ll take a closer look at this later.

Elements… Datafiles & Libraries 5

Opening and Closing Libraries

There are several ways of calling up libraries, and every method has
its virtues.

From the ‘File’ menu

When you select ‘Open library’ from the ‘File’ menu, you call up the
“main” library. By this I mean the library that is in charge from the
outset and that usually controls the loading of other “sub”-libraries.
Other libraries are closed and removed from memory before the new
one is installed and booted.

From the Format browser

Two lines appear in the lowermost part of the list in the Format
browser tools window: ‘Libraries’ and ‘Datafiles.’ By clicking on
‘Libraries,’ we see which library is in memory at the moment. We
retrieve new libraries from the hard disk by clicking on the ‘Open’
pushbutton.

Design library
The format library we are working with is marked with
an asterisk (*), and is called “design library” ($dlib).
In the Format browser we only see formats within this
library. From this perspective, libraries are usually
isolated from each other. To change design libraries
and work with formats in other modules, you double-
click on the desired library name (in the Format
browser).

When you load a format library from here (using the
‘Open library’ pushbutton), the STARTUP menu is not
installed, and the 0-procedure is not run. The developer
has to install any menus himself. The advantage of this
is that it provides full control over the events taking
place when libraries are loaded.

6 Datafiles & Libraries Elements…

$Ignore external
The notational attribute $Ignoreexternal is set for every
library. It is normally turned off; but when switched
on, it allows any format library to read and modify the
variables and formats of other libraries. You then have
to use the complete format address to reach the right
formats. This means using the library’s name
whenever you refer to it. Usually only the neighboring
library’s variables and fields are relevant, so we
needn’t do anything with this attribute.

From procedures

It’s a good idea to create your own procedures in order to ensure
complete control of the way the different modules are loaded. Here
we must use our wits to locate the various libraries, even when they
are in redundant directories or in folders on the disk. We can also
enter our own password routines and send parameters to the
STARTUP/0 procedure in the library being opened.

The ‘Open library’ or ‘Prompt for library’ commands are every bit as
versatile in loading libraries as the above. We can choose the ‘Do not
close other libraries’ and the ‘Do not call startup procedure’ options.
(Their meaning should be self-explanatory.) If the path isn’t
specified, Omnis will search in the EXTENSION/Omnis Extension
folder. The path must include the library’s file name, as well as any
internal name and password. Giving the password here makes it
unnecessary for the user to key it in himself when a new module is
loaded. Finally, you send a list of any parameters in parentheses.
This works just like you’re used to from your previous experience
with parameters (see the chapter entitled “Field Types & Their
Function.”)

Internal names

To distinguish different libraries and datafiles from each other, they
are given names of their own. Each name is usually the file name.
Windows users in particular should remember that there is a
difference between the file name and the internal name. Unless you
specify a separate internal name, Omnis will remove the path and
extension from (its copy of) the file name before using it internally.

Elements… Datafiles & Libraries 7

The ‘path’ is a long sentence telling you which folder the current file
is located in and which disk it is on. The extension is a combination
of three letters (separated from the rest of the information by a
period), which defines an MS-DOS file type. The “.LBR” extension
is removed. The conversion works as follows:

C:\OMNIS\APPS\INVOICE\MONTHSUM.LBR
Internal name: MONTHSUM

Internal names for Macintosh users
For Macintosh users, the internal name will usually
turn out to be the same as the file name. However, if
there are three letters separated from the rest of the file
name by a period, they will not be included in the
internal name. In this respect, there is no difference
from Windows.

Extension libraries

You can use Omnis to improve the Omnis environment itself. Any
format library placed in the extension folder (Omnis Extensions for
Macintosh, EXTENSION for Windows), is loaded when you start up
Omnis. There are a few differences, however. The familiar
STARTUP/0 procedure will be run, but the STARTUP menu will
not be installed. Any menus installed by the STARTUP/0 procedure
will not appear until a library that hasn’t been placed in the extension
folder is opened. Omnis is virtually in a state of suspended animation
(closed state) until “real” libraries are opened. When you open an
ordinary library, Omnis will go into its usual (open) state.

In the extension folder you can place a library that should always be
present. You might as well place any control systems for loading and
unloading modules here, which will give you a large measure of
control over other libraries.

8 Datafiles & Libraries Elements…

Controlling Datafiles

Omnis 7 v2.x can keep several datafiles open at the same time. This
affords a previously unheard of degree of flexibility, and is one of
the main reasons that modular applications are possible. On the other
hand, this is a decidedly complicating factor, and any such
complication of datafile manipulation will be off-putting to many
developers. If the developer is not absolutely sure of himself here, he
risks riddling the application with errors so serious as to render it
unusable. Full control is absolutely essential. How, then, shall we
manipulate these datafiles, and when do we know what data goes
where?

Two main routes

There are two principal routes for this control to follow: A common
one that can be varied, and one or more individual ones that are
locked.

The common route
The common route starts from all file formats that are
in Floating datafile mode. All file formats are in this
mode at startup time. The data fed into them is sent
down to the datafile indicated in Current datafile.
Figure 3 illustrates this point with a faucet that can be
turned. Right now it is pointing to datafile DATA 1.
Text, pictures, dates, numbers, etc. from file formats
FILE A, FILE B and FILE C all run down into datafile
DATA 1. The current datafile is the one the faucet is
pointing to. If we want to “turn” the faucet, we use the
‘Set current datafile’ command and ask for one of the
other datafiles.

Elements… Datafiles & Libraries 9

File
A

Data 1 Data 2 Data 3 Special
data

File
B

File
C

Special
file

Fig. 3 Floating and default datafile mode

Locked, individual routes
The other type of route is individual, and establishes a
fixed link between specific file formats and a specific
datafile. It doesn’t care what the current datafile is, nor
does it act on it in any way. This means that all of the
data entered in the SPECIAL FILE file format in the
figure will automatically end up in the SPECIAL DATA
datafile.

Floating file mode

When a file format has been set to Floating file mode, this means
that the file format follows the common route. This one empties its
contents into the current datafile. It might be the last datafile opened
or the last one mentioned with the ‘Set current datafile’ command. If
all file formats are in Floating file mode, you get something like
Figure 4. Here, the data ends up wherever the faucet is pointing.

10 Datafiles & Libraries Elements…

File
A

Data 1 Data 2 Data 3 Special
data

File
B

File
C

Special
file

Fig. 4 All file formats in floating datafile mode

Set default datafile

The individual method is thus the handiest. This is because each file
format has its own task, so it is only natural to divide datafiles up in
a similar way at a higher level. This can be quite useful when making
backup copies. It will be possible to separate fixed data into its own
datafiles, minimizing the number of files that must be backed up.
Furthermore, particularly sensitive data can be separated from the
rest and placed in well-protected partitions on the hard disk.

The procedure in practice
Using the ‘Set current datafile’ command, we specify
the datafile we wish to connect to. This file must be
open, or we will get a ‘General purpose error,’ which
causes Omnis to abort. After choosing the correct
datafile, we set a list of file formats to be funneled into
this file using the ‘Set default datafile’ command. For
the FILE A file format, the procedure will be as shown

Elements… Datafiles & Libraries 11

in Procedure 1. Once the link has been created, we can
return ‘Current datafile’ to its previous setting.

Associate datafile and file format 1

;; Alternatively, a datafile name-checking routine first
Set current datafile {Data 1}
Set default datafile {File A}

File
A

Data 1 Data 2 Data 3 Special
data

File
B

File
C

Special
file

Fig. 5 All file formats set to default datafiles

Linking all file formats to their own datafiles
If we link every file format to specific datafiles, the
result will be as illustrated in Figure 5. Here, ‘Current
datafile’ will have no influence on where information
is stored.

Resetting from ‘Default file’ to ‘Floating file’ mode

12 Datafiles & Libraries Elements…

If you want to reset the file format from a locked,
individual route to the common route, use the ‘Set
floating file mode {file format}’ command.

Summary

To summarize Figure 6, we may regard the faucet as representing
‘Current datafile.’ The gray fixed connections show how the ‘Set
default datafile’ command works.

File
A

Data 1 Data 2 Data 3 Special
data

File
B

File
C

Special
file

"Current data"

"Default data"

Fig. 6 Summarizing datafile handling

Elements… Datafiles & Libraries 13

CRB and Data Files

Adding data to different datafiles

Current Record Buffer is a fundamental concept in Omnis. It can be
defined as every field in every file format. Another way of putting it
is to say that it is the combination of one record from each file in
memory at any given time. Together, all these field values are
written to disk when an ‘Update files’ command is given. Naturally,
files set to Memory Only, Read Only or Closed are exempt from this
rule. As we locate records, the CRB becomes an ever-changing
combination of field values. So far this has been a relatively simple
term. (See the chapter entitled “Data Structure: Memory & Hard
Disk.”) But now it’s time we made things a bit more complicated!

A complete CRB for each datafile
In principle, when you have several datafiles open,
each one has its own complete CRB. Imagine sheets of
paper placed side by side in piles. The “page layout” is
similar for all the sheets, but the content varies. Each
sheet of paper represents a record and each pile a
datafile. The top sheet would then represent the CRB.
Keep in mind, though, that this example uses the same
file format in each datafile. If we were to look at each
pile, we would see that fields in the file format contain
different values in each pile.

CRB

Datafile A Datafile B Datafile C

Fig. 7 One CRB in each datafile

14 Datafiles & Libraries Elements…

We usually only notice this fact when the same file
formats store data in different datafiles. When we
change ‘Current datafile,’ the field values in these
formats also change.

RSN
When we add data to different datafiles, we see that the
Record Sequence Number (RSN) is numbered
separately in each datafile. Thus RSN will start with
number 1 every time we start adding data to a file
format in a new datafile, even though we have
previously used this format in other datafiles. From
this perspective, datafiles are completely unaware of
each other’s existence.

Reading and modifying values in different datafiles

If we use several datafiles simultaneously, we ought to know how to
read and modify values in CRBs that belong to datafiles other than
the current one. The principle here is not new. We add extra
information to the field names to reach the values we want. Once the
correct addresses have been set, we can deal with the fields the way
we are accustomed to.

File formats within the same format library
The general way of addressing field values in CRBs
belonging to other datafiles is as follows:

datafile.fileformat.fieldname

If our datafiles are called MYFRIENDS and
YOURFRIENDS, the file format is fPersons, and the
field is F_Name, the procedure will probably look
something like this:

Calculate #S4 as MyFriends.fFriends.F_Name
Calculate #S5 as YourFriends.fFriends.F_Name (Prl. 1)

After this, #S4 will contain “Roger,” which is the name
of one of my friends. #S5 will contain “Harry,” who
isn’t really one of my friends.

Elements… Datafiles & Libraries 15

File formats in other libraries
If we want to call up values belonging to file formats
in libraries other than $clib, we have to turn on
$ignoreExternal:

Calculate #F as $clib.$ignoreExternal.$assign(1) (Prl. 2)

The address notation is as follows:

library.fileformat.fieldname

If we want to call up the name of a pet (P_Name) in
the fPets file format in the ANIMALMODULE library,
the procedure will look like this (Prl. 3):

Calculate #S4 as AnimalModule.fPets.P_Name (Prl. 3)

If no specific datafile has been specified, the current
datafile will be used.

Several datafiles
If the library we are looking for uses more than one
datafile, the correct address will be:

datafile.library.fileformat.fieldname

Let’s look at the first example we used in this sub-
heading; but imagine that we are now programming a
procedure in ANIMALMODULE (or any other) library.
The library we want to get to is MAINLIB, and we
want to know the name of the persons in the CRB that
are related to the datafiles MYFRIENDS and
YOURFRIENDS (i.e. the CRBs that go with their
datafiles).

Calculate #S4 as MyFriends.MainLib.fFriends.F_Name
Calculate #S5 as YourFriends.MainLib.fFriends.F_Name

#S4 will be “Roger,” one of my friends; and #S5 will
be “Harry,” one of your friends, even though the Go
point is in the ‘AnimalModule’ library.

16 Datafiles & Libraries Elements…

Opening and Closing Datafiles

From the Format Browser

At the bottom of the main list in the Format browser tool window we
find ‘Datafiles.’ By clicking here, we see all of the open datafiles.
Current datafile is marked with an asterisk (*). The pushbuttons
allow us to open and close datafiles at will, and double-clicking sets
a datafile to Current.

From procedures

We find ‘Open datafile,’ ‘Prompt for datafile’ and ‘Close datafile’
among the procedure commands. There isn’t much more to say about
them, except for the fact that ‘Open datafile’ also gives you the
option of mingling the datafile to be loaded with the those that
already exist in memory, or of replacing them altogether. Moreover,
any datafile opened will automatically become the current datafile.
Keep in mind, however, that this part of the ‘Open datafile’
command is irreversible, so it’s up to you to return Current datafile
to its original setting unless you want to change it.

Elements… Datafiles & Libraries 17

Example of a Datafile Handling Procedure

Some people might find the expanded structure of many datafiles
intimidating, especially the idea of the “floating” datafile. (What? Do
you mean to tell me that my data just “float”?!) Unless the
procedures handle things properly, data could well end up hiding in
the most unlikely datafiles. To put you at ease, here is a practical
example of how to solve the problem. We’ll show you how to carry
out the most conventional procedure – namely, how to link specific
file formats to specific datafiles.

Main procedure

There are a few tasks in this procedure that need to be dealt with in a
responsible manner. Let’s take a look at the elements we ought to
include:

Remembering the name of the previous current datafile
We must remember the setting of the current datafile,
because the ‘Open datafile’ command will change it.
To do this, we use the Lo_Last_Datafile variable.
When we have finished connecting the Default
datafile, we set the Current datafile to the name saved
in Lo_Last_Datafile. If Lo_Last_Datafile is empty, this
means that no datafile was open to begin with and we
won’t have any file to return the current datafile to. (So
don’t even try!)

Where is the datafile?
The next problem is guessing where the datafile is. It’s
worth checking the same folder as $clib. This means
that we’ll need a path to $clib, but won’t need $clib’s
name. No problem! Procedure 3 will take care of this
nicely.

Find it yourself!

18 Datafiles & Libraries Elements…

If the datafile can’t be found, you’ll have to ask the
user to find it himself (the ‘Prompt for data file’
command). Before you do this, though, you should
alert the user, or you might end up with your support
phones ringing at all hours of the day (and night!), or
some similar nightmare scenario.

Link the file format and datafile
The magic ‘Set default datafile’ command takes care
of this. It’s up to the developer to decide on a name for
the file format and enter it.

Set Current data to Last_Data
Finally – if necessary – we clean up and reset the
current data to its previous setting.

A•Open datafile 2

Local variable Lo_Last_Datafile (Character)
Local variable Lo_Path (Character)

Calculate Lo_Last_Datafile as $cdata().$name
Call procedure pTest/3 {A1.Get $clib path} with return value Lo_Path

Open datafile (Do not close other data) {[Lo_Path]MYDATA.DF1}
If flag false

OK message {Please locate the datafile MYDATA.DF1}
Prompt for datafile (Do not close other data)

End If

Set default datafile {fPersons}

If len(Lo_Last_Datafile)>0
Set current datafile {[Lo_Last_Datafile]}

End if

Subprocedure: Get Path

This subprocedure (Procedure 3) returns the path name, complete
with delimiters according to the platform in use. It finds the position
of the library name within its path name, and extracts the string up to

Elements… Datafiles & Libraries 19

this position. This corresponds to ‘$clib().$pathname,’ up to and
including the final delimiter.

Platform-independent code
This procedure should work in both Macintosh and
Windows environments. This means we must bear in
mind that each operating system uses different
folder/directory delimiters. The Macintosh uses a colon
(:) between its folders; Windows and OS/2 use a
backslash (\) between their directories. We
circumvent the delimiter problem by finding the
position of the library name in the complete
$pathname, sending back, untouched, the remaining
information as a whole path.

A1.Get $clib path 3

Local variable Lo_Path (Character)
Local variable Lo_Path_and_Libname (Character)
Local variable Lo_Libname
Local variable Lo_Pos_of_Libname

Calculate Lo_Path_and_Libname as $clib().$pathname
Calculate Lo_Libname as $clib().$name
Calculate Lo_Pos_of_Libname as pos(Lo_Libname,
Lo_Path_and_Libname)
Calculate Lo_Path as
mid(Lo_Path_and_Libname,1,Lo_Pos_of_Libname-1)

Set return value {Lo_Path}

(If you don’t understand the notations in this chapter,
please turn to the chapter entitled “Introduction to
Notation.”)

qCHhcq
Libraries are more than books!

qCcq

Sequence of Procedures

Introduction.. .2
Field Procedures .. .4
Window Control Procedures (WCPs).. .5
Library Control Procedure (v2.x and v3.x) .. .7
The Timer Procedure.. .9
The Jig-Saw Model.. 11

The individual parts
Changing houses
Returning to house
Inactive fields

Windows in the Jig-saw Model.. 19
Opening a window via menu or procedure
Outside Enter data

Table Fields in the System (v2.0) .. 23
Set Next Action (SNA) ... 25
Queue Action.. 27
Procedure Stack.. 28

Move up stack’/‘Move down stack
The ‘Clear procedure stack’ command
Quit to Enter data
Quit all procedures

Tables of the Jig-Saw Model.. 36
Tables – Macintosh.. 37

Tables categorized according
 to the jig-saw model (Macintosh)
Alphabetical overview (Macintosh)

Tables – Windows... 41
Tables categorized according
 to the Jig-saw model (Windows)
Alphabetical overview (Windows)

Events as Evoking Factors (Macintosh and Windows).. 45
“Real” events – evoking FWL or WL
Status messages – accompanying various events
Events that must be activated before use

2 Sequence of Procedures Elements…

Introduction

Ever since computers came on the scene, the way they are programmed has
naturally been the most crucial factor in their usefulness. The first machines
had to be programmed in a code that was compatible with their internal
structure. On the earliest machines this meant connecting wires between
vacuum tube circuits. The arrival of microprocessors made it possible to
program properly in machine code: long sequences of digits in which each
sequence represents a severely restricted command. The programmer
himself had to move digits from one address in the memory to another in
order to be able to make calculations. He was usually a mathematician (or
plumber, if you will) and had direct contact with the machine’s central
processor, the CPU. This was first-generation programming language.

Later, Assembly and other letter-based languages were developed. In these
languages each command (which consisted of three letters) could carry a
somewhat heavier load, and the language acted as an intermediary between
programmer and microprocessor. It translated what the programmer wanted
into machine code. Assembly was a second-generation language. When
Pascal, Simula, Basic, Forth and C arrived with their structured handling of
variables, increasingly advanced commands, and potential for well-ordered
programs, these were called third-generation programming tools.

Omnis 7 is a fourth-generation development tool. Individual commands are
“big” – i.e. they each perform many tasks for the user. Each command is
little more than the title of a long list of minor commands that the user
doesn’t need to think about. In addition, the developer is placed in a logical
system of empty building blocks that follow a particular sequence, depend-
ing on their function and the context. The developer fills these blocks with
procedures. Care has been taken to combine the highest degree of flexibility
with cohesiveness and reliability, so that the applications never “derail.”
Knowing how this system is put together provides valuable insight into how
Omnis functions as a specialized programming language for databases.

Omnis was designed on the assumption that the developer wants to com-
municate with the user by means of a number of standardized elements. We
have access to all the windows we want, which we can fill with fields of
various kinds, and we can create menus that will display our key application
commands. In addition to this, we can let the pushbuttons activate a more
narrowly focused subset of commands within each window. For instance,
we can group related commands in popup menus, allowing the user to
choose alternatives from lists or popup menus. On the whole, these are easy
to use. Situations can arise, however, where the developer needs to find a

Elements… Sequence of Procedures 3

special solution, where field or menu procedures alone do not suffice. This
is where the control procedures come in. We’ll be looking at the following
elements:

• Field procedures

• Window Control Procedures

• The Library Control Procedure

• The Timer procedure

In what follows we will discuss each of these individually before we start
combining them and putting everything into a coherent system.

4 Sequence of Procedures Elements…

Field Procedures

Field procedures should be familiar to most developers. Under each field in
a window there is a procedure that generally runs when the user employs
this field. This means going in or out of Entry fields, clicking on check-
boxes or radio buttons, selecting from lists, etc. Because they are run only
when they are needed, precise and highly focused procedures can be placed
behind the fields.

This is but one of Omnis’ strengths. Since we don’t have to make sure that
the procedures are run at the right time, we can concentrate on the short,
simple procedures that are to be added. For instance, we can assist the user
maximally in entering the correct values. On entering Entry Fields, we can
insert today’s date or any other appropriate value. On exiting, the supplied
values can be checked to see that they are within the limits of the data. If
there are any incorrect values, you can return to the field and give an ‘OK
message’ or the like. Example: scale of marks 1 through 6, date within the
current year only, etc.

Elements… Sequence of Procedures 5

Window Control Procedures (WCPs)

Each window may have its own control procedure, called Window Control
Procedure (abbreviated WCP). This is a procedure that is run in relation to
each active or inactive field inside a given window. It is also run before you
enter a window by clicking on it or by opening the window from a menu.
The same thing happens when a window goes from Design mode to ‘open’
state (CMND/CTRL-W). In addition the WCP runs when the window itself
or one of the background objects are clicked on. Thus the WCP is related in
some way to “everything” having to do with the window in question. If you
change windows, a different WCP is in charge.

Activating and deactivating the WCP
The WCP for the current window is set with the ‘Set window
control procedure’ command. It applies to the window where
we find the procedure that contains this command. Although
the control procedure itself may be located elsewhere, the ‘Set
window control procedure’ command must be in the window
to which the WCP applies. The WCP is deactivated when the
window is closed, or when it is activated by another
procedure with the ‘Clear window control procedure’
command.

Running the WCP
Generally speaking, the WCP is triggered by all events (Enter
data messages) that occur because the user has done some-
thing in the window to which the WCP belongs. #CLICK,
#BEFORE, #AFTER, and #WCLICK are typical events.

Areas of use
The WCP is, in fact, a jack-of-all-trades. We hope the
following hints will come in handy:

• Setting Main file and Current list in main windows for the
various files.

• Preventing other windows from opening inadvertently.

• Preventing a window from closing during Enter data
mode.

• Performing special manipulations of fields or responding
to user input in a tailor-made way.

6 Sequence of Procedures Elements…

• Detecting and reacting to clicks on inactive fields or the
window itself, giving rise to different variants of the user
interface.

Remember, though: the WCP is evoked both during and not during Enter
data mode, e.g. after ‘Prepare for insert.’ So take care not to do anything
without first making sure that you are not interfering with the poor user
trying to input a few humble bits of data.

qCHhcq
Watch out, windows, Big Brother is watching you.

qCcq

Elements… Sequence of Procedures 7

Library Control Procedure (v2.x and v3.x) or
Application Control Procedure (v1.x)

In Omnis version 1.x, the global control procedure is called the Application
Control Procedure (or ACP). This applies to the application as a whole. In
v2.x, each application consists of one or more libraries. Here we have the
Library Control Procedure (or LCP), which rules the roost within the
bounds of its library. LCP and ACP are generally run where the WCP runs,
except that LCP and ACP apply to all the windows in a library.

Activating ACP or LCP
ACP can be activated by windows and menus anywhere in the
application, whereas LCP primarily applies to the library that
contains the ‘Set library control procedure’ command. In this
way the LCP is exactly like the WCP, but on a higher level.
The LCP of one library will also apply to windows of other
libraries, provided they are opened or installed by the library
to which the LCP belongs.

Global LCP
If you check off the ‘All libraries’ option in the ‘Set Library
Control Procedure’ command, the LCP will apply to the entire
application, not just the particular library within which the
LCP was set. We call this a global LCP. Each library can have
only one LCP, whether it is global and applies to all libraries
or is local and applies only to this library. If more than one
library has a global LCP, they will all be run in sequence
throughout the application in the order in which they were
activated.

The ‘No windows’ option
If the ‘No windows’ option has been checked off, the LCP
will remain activated even when all windows are closed.
Normally, the LCP and the ACP are not run when all
windows are closed, even when selecting from a user-defined
menu. On the other hand, if the ‘No windows’ option is
checked off when the LCP is activated, the latter will run also
when only menus are in view.

8 Sequence of Procedures Elements…

Running LCP or ACP
Basically, LCP or ACP is run every time the user does some-
thing that triggers an event, e.g. #CLICK, #WCLICK, #ENTER,
#TAB, #KEYEVENT, etc. All events that evoke the field
procedures also evoke an ACP or LCP if either of these are
activated.

Areas of use
LCP and ACP, the developer’s “fine tuners” in special situa-
tions, are excellent tools for special purposes. By the same
token, they can easily be misused as a “last resort” and as an
easy way out. Since they reach everywhere except reports,
special care must be taken in programming them. The devel-
oper must think in terms of the application as a whole and
remember everything at the same time – not the easiest task in
the world!

Enter data
LCP and ACP, like the Timer procedure and the WCP, can
intrude during Enter data. In any case it is important that the
procedure not interfere with what the developer wants to do in
the procedure that is waiting. When the user presses OK, a
number of things may have changed, and the updating could
be done with the wrong data. We can check in the control
procedure to see whether we are in Enter data by looking at
the value of #EDATA. See the chapter entitled “The Ins &
Outs of Enter Data.”

qCHhcq
With its pervasive reach, the LCP can make your day

– or totally wreck it –

qCcq

Elements… Sequence of Procedures 9

The Timer Procedure

The characteristic feature of the Timer procedure is that it can be run at
regular intervals set by the user. Omnis has a sort of alarm clock built into it
which ensures that the correct procedure is run at the right time. The time
interval may be designated in increments of one second or more.

The sequence of procedures
This is straightforward enough, but the nervous developer
might perhaps wonder whether the Timer, by some statistical
fluke, might worm its way in among the other control proce-
dures. Fortunately, that doesn’t happen. The Timer stays right
at the back of the line in every situation and waits until the
cursor has performed all its duties and has returned to an ap-
propriate house. Even with the shortest time interval, the
Timer procedure places itself at the bottom of each evoked
procedure stack. So we don’t need to explain how the Timer
works systematically; the Timer will take care of itself.

Exceptions
In both v1.x. and v2.x, the Timer pauses when no windows
are open. It restarts when a window is opened. The Timer also
stops when the developer is changing a format.

Uses
Any operations to be carried out regularly may profitably be
placed under the Timer procedure. Suitable tasks include the
following:

• Automatic updating of the time of day while entering a
record.

• Updating of “shared” lists in a multi-user system.

• Testing whether there are recent changes in datafiles in
multi-user systems.

• Time limit for interrupting Enter data (and ‘Prepare for
update’ mode) when the user takes a coffee break (i.e. the
technique mitigates the locking of records in a multi-user
system).

• Checking for incoming electronic mail in a multi-user sys-
tem.

10 Sequence of Procedures Elements…

• Checking the appointment calendar for meetings that start
in five minutes!

Pitfalls
The Timer procedure can become annoying to the user if it
demands constant feedback and is run too often. Try to avoid
putting OK messages or Yes/No boxes in this procedure.

It’s also important to notice that there is nothing to keep the
Timer from operating when the user is entering data and
Omnis is in ‘Prepare for update’ mode. If Read/Write- or
Read Only settings are being modified, parts of a record are
being deleted, or new records are being accessed, data on the
disk can be modified beyond recognition. The links between
records may also be modified in this way. To avoid the prob-
lem, remember to check for #EDATA in the Timer procedure.

If some strange error appears to have crept in unawares, you
should have a look at the Timer procedure. This procedure is
very useful; but, like the LCP, it should be programmed with
reference to the entire application.

qCHhcq
The Timer knows when

qCcq

Elements… Sequence of Procedures 11

The Jig-Saw Model

Probably the most problematical aspect of Omnis programming is knowing
when, how and why application, window and field procedures are run. Thus
far we have had recourse only to the simplified and rather obscure
“roundabout” model in “Design and Development” (Ch. 8, pg. 9). Those
who have ventured to test and see when the control procedures are run have
usually ended up with a bunch of their own test messages, and they are none
the wiser.

Why read about something so boring?
Some might think that having to know the exact sequence of
the different control procedures is going a bit too far. But this
knowledge is vital to you as a programmer. Searching for
errors in procedure chains is practically impossible unless
you’re completely sure when the different procedures are run.
But if you are, you’ll also be able to come up with practical
solutions to seemingly intractable problems, because the con-
trol procedures take over where the field procedures leave off.
It is crucial to the effectiveness of the applications that the de-
veloper has a good understanding of the sequence.

You can compare this to the importance for professional
musicians of practicing scales. Scales and sequences may
both seem uninspiring and “un-useful,” but they are
(indirectly) vital to music-making and programming respec-
tively. So read on, and be comforted. It is more important to
understand the model and the mentality behind it than to re-
member everything. You can use this understanding in testing
the sequence of procedures on your own.

Windows and Macintosh
There is a difference between the way the sequence of pro-
cedures is set up and dealt with in the Windows and
Macintosh operating systems. The various window fields be-
have somewhat differently. This is because Windows can be
used without a mouse, whereas Macintosh presupposes the
use of a mouse. It must therefore be possible to operate the
Windows version of Omnis by using the keyboard only. This
means that it must be possible to place (or focus) the cursor
on all kinds of active fields when the user is selecting them,

12 Sequence of Procedures Elements…

i.e. moving the cursor here using the TAB key. In Windows,
the user can simulate mouse clicks via the keyboard. For this
reason, the two operating systems are kept separate in the
model we will be discussing.

The individual parts

It is surprising how extensive the list of waiting procedures can become.
The sequence depends on many factors, one of which is the position of the
cursor at any given moment. In order to make sense of all this, a set of jig-
saw puzzle pieces and a homeloving little fellow have been developed into
an explanatory model.

Fig. 1 The cursor, shown as he appears “in real life”

The cursor
Let us imagine the cursor to be an anonymous person, fleet of
foot, who runs between windows and fields but is more com-
fortable indoors, i.e. inside one of the fields that can house the
cursor.

Elements… Sequence of Procedures 13

Fig. 2 The ultimate shelter for the cursor

Where is my house?
The cursor can run from house to house within the same win-
dow; but if he has to enter a field that won’t give him shelter,
he returns to his own house on the double. The houses are
located inside the windows. When the user is changing win-
dows, the cursor must first exit the house, and then the win-
dow, before entering the next window. Here the cursor will
find its way to the house the end-user last clicked on, pro-
vided the ‘Keep bringtofront clicks’ option is on. (Window
parameters). If this option is not set, or the end-user did not
click on a particular house, the cursor will enter the house
with the lowest field number.

Enter data
When the user enters the Enter data mode, many fields that
previously did not shelter the cursor now begin to do so.
Consequently, the cursor may often seem to enter a house
spontaneously. This applies to Entry fields, among other
fields that accept direct data entry from the user.

14 Sequence of Procedures Elements…

Field procedure Library or Application
Control Procedure

Window
Control Procedure

Library Control Procedure
with "All libraries" option

Fig. 3. The triad in the jig-saw model

The triad
The basic unit in the jig-saw puzzle is the piece shown in the
figure above. We will call it “the triad.” It consists of the field
procedure for the field in question, followed by the WCP of
the window in which the field is located, and finally by the
LCP (or ACP). The piece marked “L” stands for both LCP
and ACP in the figures that follow. After these, any global
LCPs from other libraries, as shown by the piece marked
“GL,” are appended to the end of the triad. However, for the
sake of clarity, we will not include these kinds of control
procedures in the model. They generally follow the same
pattern as ordinary LCPs. (See the chapter entitled “Datafiles
and Libraries.”)

“Field” stands for any active window element in which the
user can place procedures. The triad is the canonical sequence
that is generally followed when the cursor enters and leaves
houses, runs through different window fields, and changes
windows. In isolation it corresponds to Pushbuttons
(Macintosh), or Check boxes during Enter data mode
(Macintosh and Windows).

Elements… Sequence of Procedures 15

Field

IN OUT

Fig. 4 The sequence of procedures on entering and leaving a field

What is a house?
We may define a house as a field where the cursor can reside.
This is indicated by a flashing horizontal bar. If the cursor has
to leave to enter a field that is not a house, it will return to its
own house. When the cursor leaves the house, the “out”
sequence of procedures is run; and when it enters a house, the
“in” sequence is run. In both cases this is usually the triad.
The field that typically houses the cursor is Entry field under
Enter data.

Changing houses

When it’s time for the cursor to change houses, we get the sequence of pro-
cedures by piecing together the out-procedures and the in-procedures for the
next house. (These are usually one and the same.) If the cursor is in Field
number 1 in a window under Enter data, and the user clicks on Field
number 2 (which, like Field 1, is an Entry field), the sequence of procedures
will be as shown in figure 5.

16 Sequence of Procedures Elements…

Field 1
1 2

Field 2

Entry field

#EF: 1

Entry field

#EF: 2

Fig. 5 From one Entry field to another

In the ordinary triad the field procedures are run before the control proce-
dures. Nevertheless, the WCP and LCP steal a march on the field proce-
dures of Field 2, since they are part of the triad leaving Field 1. The full se-
quence is as follows:

1. Field procedure for Entry field, Field number 1

2. Window Control Procedure (WCP)

3. Library Control Procedure (LCP)

4. Field procedure for Entry field, Field number 2

5. Window Control Procedure

6. Library Control Procedure

Returning to house

When the cursor is in a house and the user clicks on an active field that is
not a house, we get the entire sequence by simply adding the triad (of Field
2) to the out-procedures for the house. Afterwards the cursor returns to
Field 1 and things are back the way they were before. No extra procedures
are evoked when the cursor returns to a house. The next time the user clicks
on another field, the out-procedures are run again as the house is vacated.

Elements… Sequence of Procedures 17

Entry field

#EF: 1 #EF: 2

Field 1
1

(Mac)

2

Fig. 6 From Entry field to Pushbutton and back

This example holds true for Macintosh, but it is not altogether representa-
tive for Windows, where all fields that run the triad will also house the cur-
sor. The sequence of procedures is the same, but the cursor does not return
to the Entry field shown in Figure 6. The full sequence is as follows:

1. Field procedure for Entry field, Field number 1

2. WCP

3. LCP

4. Field procedure for Pushbutton, Field number 2

5. WCP

6. LCP

Inactive fields

Inactive fields are rather strange. They will neither house the cursor nor run
field procedures. They are unable to lure the cursor from his house; our
friend the cursor just stands there and waits for the inactive field to run its
control procedures.

18 Sequence of Procedures Elements…

Field 1

#EF: 1 #EF: 2

Display fieldList

Fig. 7 Clicking on a disabled field

The control procedures are run twice. The first pair is, in effect, an out-pro-
cedure without any field procedure, but it receives no Enter data messages.
Only in the second pair is it possible to test #CLICK, #ER and #EN and
trigger an appropriate reaction. These are:

1. Window Control Procedure. #ER reflects the previous
house (Field 1), but no #AFTER is evoked.

2. LCP

3. Window control procedure. Here #CLICK crops up. #ER
is the inactive field (Field 2).

4. LCP

(If the house is a Combo box, the first pair is deleted and the sequence is
just “WL.”)

Elements… Sequence of Procedures 19

Windows in the Jig-saw Model

Much of what applies to houses also applies to windows. There are in-pro-
cedures, consisting of the WCP for the window in question, and the LCP.
The WCP may be compared with the field procedure for the window ele-
ments, since it is unique for each window. (The WCP must be activated,
however. For that matter, the LCP must also be activated in order to func-
tion.) The out-procedures are the WCP followed by the LCP.

Window

Fig. 8 Control procedures in a window

The initiating procedure (or 0-procedure) is run when a window is opened,
i.e. not just brought to front. The initiation procedure actually belongs to the
in-procedures; but since it is run just after the ‘Open window’ command, it
is best to separate it from the triad. We will come back to this later.

Changing windows

To cause the cursor to move from one window to another, you start by piec-
ing together the out-procedure of window A and the in-procedure of win-
dow B. Like this (next page) :

20 Sequence of Procedures Elements…

Window A
Window B

Window A
Window B

A B

Fig. 9 Moving between windows

We can extend this by adding one house in each window. Now the cursor
has to begin by leaving the house before he can run from one window to the
other. When the cursor reaches window B, he will head for the first house in
this window. (If the ‘Keep Bringtofront clicks’ option is on, it will move to
the house being clicked on.) The resulting chain of procedures looks like
this (Figure 10):

Window A Window B

B Window BWindow A

Field 1, Window A Field 1, Window B

Field 1AField 1
A1 B1

Fig. 10 Moving from a house in window A to a house in window B

Here the houses are Entry fields under Enter data. The complete sequence is
as follows:

Exit Field 1 in Window A:
1. Field procedure for Field 1 in Window A
2. WCP for Window A
3. LCP

Exit Window A:
4. WCP for Window A

Elements… Sequence of Procedures 21

5. LCP

Enter Window B:
6. WCP for Window B
7. LCP

Enter Field 1 in Window B
8. Field procedure for Field 1 in Window B
9. WCP for Window B
10. LCP

In this way we can piece together the complete list of procedures for a given
situation. Windows behave the same both inside and outside Enter data.

Frustrated?
If all this seems somewhat mindboggling, you may take com-
fort in the fact that it could have been a lot worse! Any pro-
gramming situation involving general modules that are com-
binable will inevitably result in a lot of code and a host of
procedure lines – the modules in this case being, of course,
windows and fields with control procedures. Brief, concise
code must be sacrificed to achieve full flexibility and
predictability when the combination of modules is run.

Opening a window via menu or procedure

When a window is opened, procedure number 0 for the window is run. This
happens immediately after the ‘Open window’ command is executed. When
the procedure has been run, the WCP and the LCP take over. The same
sequence is run when the window is opened from a field procedure (for
example, under a Pushbutton.)

Window 1 Window 2

Procedure 0
in next window

Menu procedure

Field

Open window {Window 2}

Open wi

Menu

22 Sequence of Procedures Elements…

Fig. 11 Opening a window when the cursor resides in a field

If the menu is used when the cursor resides in a house, the out-procedures
for the house are run before the menu procedure. If the window is opened,
the 0 procedure follows immediately after the ‘Open window’ command.
Next comes the rest of the menu procedure, followed by the out-procedures
of the window being vacated. Finally, the in-procedures for the new win-
dow (and any in-procedures for the nearest house) are run.

Outside Enter data

The same basic rules apply both inside and outside Enter data, although
some of the fields behave differently. The most important differences are
that Entry Fields and Picture fields no longer house the cursor, nor do they
run their field procedures. Display fields, Check boxes and Radio buttons
also stop running their field procedures. This holds true for both Windows
and Macintosh. The other fields generally behave as they normally do (see
tables). There is no significant difference in the sequence of events when
changing windows or using menus.

Elements… Sequence of Procedures 23

Table Fields in the System (v2.0)

Each table has its own field procedure that acts like a control procedure.
Fields within the tables are treated in a special way. The tables may be
regarded as “windows within windows.” The field procedure of the table is
placed next to the front of the triad of each field, as if it were a Window
Control Procedure for the “mini-window.” The sequence is as follows:

Field 2
2 1 Field 3

3 1

Entry field

#EF: 2

Entry field

#EF: 3

Table field
#EF: 1

Fig. 12 Inside a table field, moving from one entry field to another

This sequence also applies when changing lines within the table, i.e. going
from a house in one line to a house in another line. If the table is not set to
‘Enterable,’ it will function like an ordinary list, even where control pro-
cedures are concerned.

24 Sequence of Procedures Elements…

Complete sequence:

1. Field procedure for Field 2

2. Field procedure for Table field (Field 1)

3. WCP

4. LCP

5. Field procedure for Field 3

6. Field procedure for Table field (Field 1)

7. WCP

8. LCP

(As the cursor enter the table, the triad is run as usual, and from then on the
table field procedure is included in the triad, as long as the cursor moves
between houses inside the table.)

Elements… Sequence of Procedures 25

Set Next Action (SNA)

This command gives the developer an opportunity to force the user to do
what the developer wants him to. ‘Set Next Action’ replaces the user’s last
action with a “simulated user action,” which is carried out after all the
procedures waiting to be run are completed. Structurally, SNA is on the
level above the individual control procedures, since each user action works
in triads. The last action the user performed (called “default action”) trig-
gers the out-procedures, and all of these are run. However, the triad that
normally follows (i.e. the in-procedures), belongs to the “default action.”
Using the SNA command, we redirect the cursor, thereby canceling the
triad or swapping it for in-procedures belonging to other fields.

Example
If the user clicks on another window, a #WCLICK is
triggered. This can be intercepted with the aid of a WCP. If
we give the ‘SNA remain on current field’ command, this
means that the cursor is to remain in the field where he was.
The window that was clicked on does not appear; the
#WCLICK event has been avoided. The simulated user action
is to return to the field. Other possible simulated user actions
are the following:

TAB Move to next house
SHIFT–TAB Move to previous house
OK Quit Enter data with Flag True
CANCEL Quit Enter data with Flag False

Sequence
It is important to note that the procedure where the SNA
command is found must have been completed in full before
the SNA is carried out. This means that an Enter data in the
same procedure as the ‘Set Next Action’ command will not be
influenced by SNA, because the procedure terminates after
the user has quit the Enter data of the procedure. If the
developer wants to place the cursor in a field that is not the
first house in the window field sequence, the field procedure
of the first house in the window should contain an SNA
command that directs the cursor to the correct field.

Areas of use

26 Sequence of Procedures Elements…

SNA can be used to prevent the user from doing something he
or she shouldn’t. For example, if the LCP discovers that the
user has chosen ‘Quit’ from the standard ‘File’ menu
(#ER=11009, see the ‘Call procedure’ list in Procedure Tools
Window), the developer can prevent this from being carried
out by using the ‘SNA remain on current field’ command.
However, a number of the SNA commands can lead the
developer into a never-ending loop, where his only recourse is
to turn off the computer and lose some programming work.
So look alive!

Standard Omnis window
When creating a window from a file (Make»Window for-
mat…), Omnis automatically inserts a standard WCP, which
checks to see if the user is trying to change windows under
Enter data, and prevents this by means of ‘SNA remain on
current field.’ This effectively cancels the user’s click on the
background window.

Limitations
Omnis permits only one SNA at a time. If the developer
inserts more than one SNA in the same procedure, only the
last one will be carried out. ‘SNA perform default action’
cancels the effect of an SNA given earlier in the procedure (or
earlier in the procedure sequence), so that what the end-user
was trying to do is eventually respected. In v2.x, we can place
simulated user actions one after the other in a sequence with
the ‘Queue’ commands. See next page.

Elements… Sequence of Procedures 27

Queue Action

In v2.x we are allowed to place many “user actions” outside each other. The
commands in this group behave in the same way as Set Next Action, with
two exceptions. First, the most recent user action is allowed to pass, i.e. to
be carried out, evoking all the procedures applying to that command.
Second, these commands may be arranged in a sequence of user actions.
Each new ‘Queue action’ command will be added to the sequence as it
appears in the procedures. When the entire procedure sequence has been
run, Omnis starts on the list of user actions, each of which may evoke long
sequences of procedures. The actions in the list are removed from the queue
as they are performed.

“Let me tell you a thing or two…”
Here is your chance to run circles around the poor end-user.
With a repertoire of “bells and whistles,” the paternalistic
developer may show and tell the user just what he or she
should have done.

Queue keyboard event
One of the ‘Queue’ commands deserves special mention, the
‘Queue keyboard event.’ This can “record” any series of
keystrokes from the keyboard and repeat the sequence later.
This is a very comprehensive and interesting tool with a wide
variety of uses. Within a fair-sized text field it will prove use-
ful to move the cursor by means of the functions of the four
arrow keys, the HOME key, and the END key.

28 Sequence of Procedures Elements…

Procedure Stack

Procedure stack represents the list of procedures which, at any given time,
are waiting to be carried out. It may be visualized relatively easily by using
‘Call procedure.’ If procedure A calls procedure B, the procedure stack will
consist of procedure B followed by procedure A, as long as procedure B is
being run, because procedure B must be completed before A can resume
running. If procedure B calls procedure C, B must wait till C has been com-
pleted before it can resume running. As long as C is running, the Procedure
stack is as follows:

3. Procedure C

2. The rest of procedure B (after ‘Call procedure C’)

1. The rest of procedure A (after ‘Call procedure B’)

Procedure A is waiting for procedure B, which in turn is waiting for proce-
dure C. The waiting procedure lines are marked with gray in Figure 13,
below.

Breakpoint

Procedure CCall procedure C
Calculate WASDO
Build list from fil

Call procedure B
Calculate #S1 as
Open window
Set main file fFi

Procedure A

Procedure B

Fig. 13 Visualizing the Procedure stack

The Procedure stack is a product of sequential calls. Control and field pro-
cedures are also added to the Procedure stack, arranged nicely and neatly
after the calling procedures that are waiting to be run.

Elements… Sequence of Procedures 29

‘Move up stack’/‘Move down stack’

The ‘Move up stack’ and ‘Move down stack’ commands represent one of
the less intuitive aspects of the debugger. The menu they belong to provides
us with a good way of searching for the procedures in question when
several calls follow each other. To move “down” the Procedure stack is to
move to the procedure that is next in line when the current procedure is
completed. In practice, this means the rest of the procedure that called the
current one.

Downward and upward in time
If A calls B, which in turn calls C, and we are focusing on C,
Move Down will bring us to procedure B. When we have ar-
rived there, Move down will take us to A, and Move up will
take us back to C. Thus “Down” is ahead in time, whereas
“Up” is back to the present.

About Figure 13
Let us imagine that when a new procedure is called (B), it is
placed like a piece of paper on top of the procedure that called
it (A). In the figure above, we see that C is placed on top of B,
which in turn is placed on top of A; this lends a figurative
meaning to the directions in ‘Move up’ and ‘Move down.’
‘Move down’ is to work our way down to the bottom of this
stack; ‘Move up’ is to work our way back to the top again.

The ‘Clear procedure stack’ command

This procedure command will burn all our bridges or remove every sheet in
the stack except the top one. Everything that was to come after the current
procedure will be canceled. The procedure that is currently running will,
however, be completed. If A calls B, which in turn calls C, and C contains a
‘Clear procedure stack’ command, the remaining lines of B and A (after the
lines containing ‘Call procedure’ in each respective procedure) will not be
run, no matter how patiently they may have waited in line for procedure C.
(That’s gratitude for you!)

Enter data
If one of the field procedures contains a ‘Clear procedure
stack’ command and Omnis is in Enter data, all control proce-
dures that are waiting in line will be abruptly forgotten and
Enter data will promptly come to a halt. (See Figure 14.) This

30 Sequence of Procedures Elements…

is an efficient way of closing Enter data and starting afresh,
since the procedure commands that are waiting to be carried
out after Enter data will not be carried out at all. Updating of
the file, particular calculations etc., is typically avoided. The
cursor leaves the scene without a trace – and without remorse.

Field 1

Entry field

#EF: 1 #EF: 2

Clear procedure stack

Button

1 2

Fig. 14 Clearing the procedure stack

Leaving Enter data mode
Let us imagine that our cursor has encountered a pushbutton
containing the ‘Clear procedure stack’ command. He immedi-
ately leaves Enter data, and all remaining procedure lines are
canceled. The cursor himself leaves the site, but will turn up
again in the nearest house outside Enter data.

Elements… Sequence of Procedures 31

SNA perform a
Clear list

Calculate #S1 as
Add line to list

Field

Clear procedure stack
Calculate #1 as 0
OK message {I'm leaving!}

Procedure B

Call procedure B

Procedure A

Call procedure A

Field procedure

Fig. 15 Running away from a humongous procedure stack

Clearing a big procedure stack
In Figure 15 we have included a couple of calls in the se-
quence of procedures. That which is marked gray will not be
carried out, on account of the ‘Clear procedure stack’ com-
mand in procedure B. Procedure B will, however, be com-
pleted in its entirety before the cursor leaves Enter data. The
result of the sequence will be that the commands in procedure
B will run, i.e. #1 will be set to 0, and an ‘OK message box’
will appear.

The procedure containing the ‘Enter data’ command
If the house was an Entry field under Enter data, the proce-
dure containing Enter data will be canceled too, like the gray
procedure lines in the figure. This procedure is not shown in
the figure, because that would have made it too messy. If, on
the other hand, the house had been a list field (housing the
cursor outside Enter data), the situation in the figure might

32 Sequence of Procedures Elements…

have arisen outside Enter data; in that case the cursor could
rest easily in the list field. Only if the field stops housing the
cursor as Enter data mode ends will it be necessary for the
cursor to move to the nearest house.

Quit to Enter data

This command is not quite as drastic as ‘Clear procedure stack.’ The cursor
immediately halts in mid-procedure and also cancels the triad of procedures
set with a particular event. It is soon ready for more, however. Enter data
runs as before and will be closed in the normal way when the user presses
OK or CANCEL.

Avoiding control procedures
If you don’t want to go so far as to stop Enter data and not
update the file etc., and would rather just skip the WCP or
LCP, you can use ‘Quit to enter data’ at the end of the last
procedure to be executed.

Field 1
1

Quit to enter data

Field 2
2

Fig. 16 Skipping the last control procedures on the way into the house

‘Quit to enter data’ entering a field
In Figure 16, the cursor encountered a ‘Quit to enter data’ in
the field procedure for Field 2. He simply skipped the remain-
ing ‘WL’ and went straight to the house in Field 2.

Elements… Sequence of Procedures 33

If #AFTER
 Quit to enter data
End if

Field 1
1

Field 2
2

Fig. 17 Avoiding control procedures on the way out of the house

‘Quit to Enter data’ leaving a field
In Figure 17, ‘Quit to enter data’ lies in the field procedure for
Field number 1. The cursor skips ‘WL,’ which is waiting in
line, but bounces back to face the new challenges that Field 2
has in store. This means that in order to skip the following
‘WL,’ the field procedure for Field 2 must also contain a
‘Quit to enter data’ before the cursor resides safely in its
house. (A ‘Clear procedure stack’ could have done the trick
here, but then Enter data would have lost out, i.e. would have
been canceled.)

If #BEFORE
 Quit to enter data
End if

If #AFTER
 Quit to enter data
End if

Field 1
1

Field 2
2

34 Sequence of Procedures Elements…

Fig. 18 Combining two ‘Quit to enter data’ commands, thus avoiding all
control procedures while still in Enter data mode

Avoiding all control procedures
Combining two ‘Quit to enter data,’ as shown in Figure 18,
makes it possible to avoid all control procedures when exiting
one house and entering another. The prerequisite is that both
field procedures are active so that they will run.

Elements… Sequence of Procedures 35

Quit all procedures

‘Quit all procedures’ works in the same way as ‘Clear procedure stack,’ but
in this case the procedure that is being run is canceled immediately without
being allowed to finish. ‘Quit all procedures’ is thus (if possible) even more
drastic. Nothing marked gray in the figure will be carried out. If there is an
Enter data, it too will be interrupted. Nor will the remainder of the proce-
dure containing the ‘Enter data’ command (not shown in the figure) be
completed. All control procedures are canceled. The cursor is in the nearest
house waiting for the next user action, so a ‘Quit all procedures’ is not the
end of the world. Compare Figure 19 with Figure 15 in the paragraph on
‘Clear procedure stack.’

SNA perform a
Clear list

Calculate #S1 as
Add line to list

Field

Procedure B

Call procedure B

Procedure A

Call procedure A

Field procedure

Quit all procedures

Calculate #1 as 0
OK message {I'm leaving!}

Fig. 19 The instant escape provided by ‘Quit all procedures’

36 Sequence of Procedures Elements…

Tables of the Jig-Saw Model

The following tables provide a complete overview of the way the different
fields function. Because Macintosh and Windows differ in a number of re-
spects, each of these systems is given its own table. First the fields are clas-
sified according to the jig-saw model; then they are listed alphabetically for
easy reference.

By “active” fields we mean fields that run field procedures. The tables
apply to Omnis 7 (v2.0 and later), but on the whole can be used for version
1.x as well.

Elements… Sequence of Procedures 37

Tables – Macintosh

Tables categorized according to the jig-saw model (Macintosh)

Abbreviations
F Field procedure
W Window Control Procedure
L Library Control Procedure (corresponds to Application Control

Procedure)
o Cursor exits previous house and runs its out-sequence.
r Cursor returns to previous house.
I Internal action, i.e. a command executed by Omnis by means of

standard pushbuttons.

Cursor houses (Macintosh)

Cursor houses when not in Enter data mode #BEFORE #AFTER

Combo box FWL FWL
Dropdown list (“Combo box” in v1.x) FWL FWL
Display Fields with scroll bar WL WL
Entry fields with scroll bar WL WL
Extended area FWL FWL
List field FWL FWL
Table field FWL FWL

Cursor houses during Enter data mode #BEFORE #AFTER

Combo box FWL FWL
Display fields with scroll bar WL WL
Dropdown list (“Combo box” in v1.2) FWL FWL
Entry field (all types) FWL FWL
Extended area FWL FWL
Picture field FWL FWL
List field FWL FWL
Table field FWL FWL

38 Sequence of Procedures Elements…

Non-Cursor houses (Macintosh)

Active during Enter data and
when not in Enter data mode.

Action

(Same reaction
during normal and
Enter data mode.)

Pushbutton #CLICK o FWL r
Button area #CLICK o FWL r
Standard pushbuttons #CLICK o FWLWLI r

Popup list Open list (click on the field) o
Release list, no selection r
#CLICK (new list line

chosen) or #DCLICK
(same list line)

FWL r

Menu Open menu (click menu
title)

Nothing happens

Menu selection o F r

Popup Menu Open menu (click menu
title)

o

Release menu, no selection r
Menu selection WLF r

Active during Enter data Comment (#CLICK)

Radio button o FWL r
Check box o FWL r
OK, Cancel pushbutton After this, Enter data is

terminated
o WLI (r)

Display field (no scroll bar) No out-procedures are
evoked leaving the
previous cursor house.

WLFWL r

Elements… Sequence of Procedures 39

Inactive fields (Macintosh)

No cursor houses, no field procedure and no out-
procedures. #CLICK

Entry field, when not in Enter data WLWL r
Display field (no scroll bar), when not in Enter

data
WLWL r

Picture field, when not in Enter data WLWL r
Check box, when not in Enter data WLWL r
Radio button, when not in Enter data WLWL r
Disabled pushbuttons and disabled standard

Pushbuttons
WLWL r

In a WLWL, the first part (WL) applies to the house in which the cursor
resided; the last part applies to the inactive field. Any Enter data messages
concerning the inactive field will thus show up in the last pair with the
WCP and ACP.

Alphabetical overview (Macintosh)

Abbreviations
Hs Cursor house at all times.
Hs ED Cursor house during Enter data only.
Not Hs Not a Cursor house.
FP Able to run field procedure at all times.
FP ED Runs field procedure under Enter data only.
#BEFORE Sequence of procedures inside a house, i.e. in-procedures.

(Entered for houses only.)
#CLICK Sequence of procedures when clicking in a field or

selecting from a menu, list or combo box. (Selection
when the cursor resides in the house of the last two. In
other cases only the in-procedure is evoked by clicking
and simultaneously selecting a line.)

#AFTER The sequence of procedures exiting a house, i.e. the out-
procedures. Entered for houses only.

(The abbreviations F, W, L etc. are explained in the previous tables)

Window field type Hs
Hs
ED

Not
Hs F

F
ED

#BEFORE/
#CLICK #AFTER

40 Sequence of Procedures Elements…

Button area x x oFWL r
Check box x x oFWL r
Combo box x x FWL FWL
Dropdown list x x FWL FWL
Display field,

no scroll bar
x x oWLFWL r

Display field
w/scroll bar

x x WL WL

Entry field,
no scroll bar

x x FWL FWL

Entry field
w/scroll bar

x x WL WL

List x x FWL FWL
Menu x x oF r
OK, Cancel button x x oWLI (r)
Picture field x x FWL FWL
Popup list x x oFWL r
Popup menu x x oWLF r
Pushbutton x x oFWL r
Radio button x x oFWL r
Standard button x x oFWLWLI r
Table x x FWL FWL

Elements… Sequence of Procedures 41

Tables – Windows

Tables categorized according to the Jig-saw model (Windows)

Abbreviations

F Field procedure
W Window Control Procedure
L Library Control Procedure (corresponds to Application Control

Procedure)
o Cursor exits previous house and runs its out-sequence.
r Cursor returns to previous house.
I Internal action, i.e. a command executed by Omnis by means of

standard pushbuttons.

Cursor houses (Windows)

Cursor house when not in Enter data #BEFORE #AFTER

Button area WL WL
Combo box FWL FWL
Display Fields with scroll bar WL WL
Dropdown list (“Combo box” in v1.2) FWL FWL
Entry fields with scroll bar WL WL
Extended area FWL FWL
List FWL FWL
Pushbutton WL WL
Standard pushbutton FWL FWL
Table FWL FWL

Cursor house during Enter data #BEFORE #AFTER

Button area FWL FWL
Checkbox FWL FWL
Combo box FWL FWL
Display fields w/scroll bar WL WL
Dropdown list (“Combo box” in v1.2) FWL FWL
Entry fields (all types) FWL FWL
External area FWL FWL
List FWL FWL
Picture field FWL FWL
Pushbutton FWL FWL
Radio button (treated as group) FWL FWL
Table FWL FWL

42 Sequence of Procedures Elements…

Non Cursor houses (Windows)

Active during Enter data and
when not in Enter data mode. Action

(Same reaction
during normal and
Enter data mode.)

Popup list Open list (click on the
field)

o

Close list, no selection r
#CLICK (new list line

chosen) or #DCLICK
(same list line)

FWL r

Menu Open menu (click menu
title)

Nothing happens

Menu selection o F r

Popup Menu Open menu (click menu
title)

o

Close menu, no selection r
Menu selection WLF r

Active during Enter data Comment #CLICK

OK, Cancel pushbutton After this, Enter data is
terminated

u WLI (r)

Display field (no scroll bar) No out-procedures are
evoked leaving the
previous cursor house.

WLFWL r

Elements… Sequence of Procedures 43

Inactive fields (Windows)

No cursor houses, no field procedure and no out-
procedures. #CLICK

Check box, not Enter data WLWL r
Disabled pushbuttons and disabled standard

Pushbuttons
WLWL r

Display field (no scroll bar), not Enter data WLWL r
Entry field, not Enter data WLWL r
Picture field, not Enter data WLWL r
Radio button, not Enter data WLWL r

In a ‘WLWL,’ the first part (WL) applies to the house in which the cursor
resided, the last part to the inactive field. Any Enter data messages that
apply to the inactive field will show up in the last pair of WCPs and ACPs.

Alphabetical overview (Windows)

Abbreviations
Hs Cursor house at all times.
Hs ED Cursor house during Enter data only.
Not Hs Not a Cursor house.
FP Able to run field procedure at all times.
FP ED Runs field procedure under Enter data only.
#BEFORE Sequence of procedures inside a house, i.e. in-procedures.

Entered for houses only.
#CLICK Sequence of procedures when clicking in a field or

selecting from a menu, list or combo box. (Selection
when the cursor resides in the house of the last two. In
other cases only the in-procedure is evoked by clicking
and simultaneously selecting a line.)

#AFTER The sequence of procedures exiting a house, i.e. the out-
procedures. Entered for houses only.

(The abbreviations F, W, L etc. are explained in the previous tables.)

Window field type Hs
Hs
ED

Not
Hs F

F
ED #BEFORE #AFTER

Button area x x (F)WL (F)WL
Check box x x FWL FWL

44 Sequence of Procedures Elements…

Combo box x x FWL FWL
Dropdown list x x FWL FWL
Display field,

no scroll bar
x x WLFWL r

Display field
w/scroll bar

x x WL WL

Entry field,
no scroll bar

x x FWL FWL

Entry field
w/scroll bar

x x (F)WL (F)WL

List x x FWL FWL
Menu x x uF r
OK, Cancel button x x oWLI (r)
Picture field x x FWL FWL
Popup list x x oFWL r
Popup menu x x oWLF r
Pushbutton x x (F)WL (F)WL
Radio button x x FWL FWL
Standard button x x FWL FWL
Table x x FWL FWL

“(F)” indicates that the field procedure is run during Enter data only.

Elements… Sequence of Procedures 45

Events as Evoking Factors (Macintosh and Windows)

Field, window and application control procedures are triggered by events.
These are events evoked by the user’s actions, and each of them is repre-
sented by a hash variable. If the field in question is active, the field proce-
dure is run, followed by the activated control procedures.

Other message variables (hash variables) elaborate on the status and situa-
tion of these events but do not themselves evoke an FWL “triad” (or WL).
These we have dubbed “status variables.” Here is a list of events and status
variables:

“Real” events – evoking FWL or WL

#AFTER Leaving all kinds of fields housing the cursor and all
windows opened through procedures.

#BEFORE Entering all fields housing the cursor and all windows
opened through procedures.

#BEFORE1 Same as above.

#BEFORE2 Same as above.

#CLICK On all kinds of fields except Entry fields during Enter
data. Otherwise on the window’s background.

#DCLICK On all kinds of fields except Entry fields during Enter
data, and not on pushbuttons.

#DISABLED When a field is set to disabled. Requires $statusevents
set to ‘kTrue.’

#DROP When a field has something dropped on it. Requires
$drop for the field set to ‘kTrue.’

#ENABLED When a field is set to enabled with ‘Enable fields.’
Requires $statusevents set to ‘kTrue.’

#HIDDEN When a field is set to hidden with ‘Hide fields.’
Requires $statusevents set to ‘kTrue.’

#HOLD When the user points to a field while holding down the
mouse button. Requires $drag for the field set to
‘kTrue.’

#HSCROLLED When the user uses the horizontal scroll bar.

46 Sequence of Procedures Elements…

#KEYPRESS When the user presses a key on the keyboard and the
cursor resides in a field that is a cursor house.
Requires $keyevents set to ‘kTrue.’

#MOUSEDOWN When the user points to any field and presses the
mouse button. Is also sent for window background.
Requires $mouseevents set to ‘kTrue.’

#MOUSEENTER When the mouse moves into a field area. Is also sent
for window background. Requires $mouseevents set
to ‘kTrue.’

#MOUSELEAVE When the mouse moves out of the area of a field. Is
also sent for window background. Requires
$mouseevents set to ‘kTrue.’

#MOUSEUP When the user releases the mouse button, and the
arrow is pointing to any field or the background of
the window. Requires $mouseevents set to ‘kTrue.’

#MOVE Requires $drag for the field set to ‘kTrue.’

#OK (May be counted as an event. Is sent simultaneously
with #AFTER.)

#RESIZE Not associated with any particular field. Evokes WA
only.

#RHOLD Requires $drag for the field set to ‘kTrue.’

#RMOUSEDOWN Requires $mouseevents set to ‘kTrue.’

#RMOUSEUP Requires $mouseevents set to ‘kTrue.’

#SENT

#SHOWN Requires $statusevents set to ‘kTrue.’

#TOTOP

#TOTOP1

#TOTOP2

#VSCROLLED

#WCLICK

Elements… Sequence of Procedures 47

Status messages – accompanying various events

#ALT

#CANCEL Sent together with #AFTER

#CLOSE Sent together with #AFTER

#COMMAND

#CTRL

#DELETE

#EDATA

#EDIT

#EF

#EFLD

#EM

#ENTER (Enter key evokes an #OK, which may be counted as
an event.)

#ER

#FIND

#INSERT

#INSERTCV

#INSIDE In tables only.

#KEY

#LCHANGE In tables only.

#NEXT

#OPTION

#PREVIOUS

#RETURN

#SHIFT

#SKEY

#STAB

#TAB

48 Sequence of Procedures Elements…

Events that must be activated before use

Some events make heavy demands on the processor and are therefore nor-
mally turned off. Below is a list of events that must be activated before they
are used. The notation object (to be set to ‘kTrue’) heads each group. The
accompanying status variables are placed under each event.

$clib.$prefs.$mouseevents
#MOUSEUP
#MOUSEDOWN
#MOUSEENTER
#MOUSELEAVE

$clib.$prefs.$rmouseevents
#RMOUSEUP
#RMOUSEDOWN

$clib.$prefs.$keyevents
#KEYPRESS
#KEY
#SKEY

$clib.$prefs.$statusevents
#DISABLED
#ENABLED
#SHOWN
#HIDDEN

qCHhcq
Learning the sequence of procedures is a lot like

learning scales
 – not exactly music to your ears, but useful

nonetheless.

qCcq

Lists & Tables

What Is a List?.. 2
List Settings.. 4
Manipulating Lists . 6

Creating and pointing to a list
Defining a list
Building a list
Editing lines in a list
Editing single values in a list
Automatic editing control (Local)
Multiple line selections in lists

Displaying Lists in Windows... .24
“Simple” List fields
Dropdown lists (Combo boxes in v1.x)
Popup lists
Combo boxes
Field value window for lists
Tables
About the calculation field
Suggested ways of using lists

Displaying Single List Values.. .33
Using ‘Load from list’
The ‘lst’ function

Lists Stored in Datafiles.. .35
Lists within Lists .37
Redrawing Lists .38

Redraw named fields
Redraw numbered fields

Binary Search in Lists .40
Tables .. .43

What is a table, anyway?
Window elements in tables

2 Lists & Tables Elements…

What Is a List?

A list is an isolated area in memory that contains values in an ordered system.
Think of a list as a table containing rows and columns, just like those in textbooks
and newspapers. We use fields from the file formats or hash variables to give the
columns their titles (‘Define list’); but in themselves, the contents of the lists are
totally independent of the fields. When we give the ‘Add line to list’ command, the
contents of the fields in the list definition (which gave the columns their names) are
copied to the new line in the list. Thus the numbers and values have their allotted
space in memory, independent of the original fields. The values can be transferred
to the respective fields again with ‘Load from list.’ Lists are usually manipulated
whole lines at a time so that all the values on that line are affected. New lines can
be added and old ones removed.

1

2

5

6

7

8

9

10

RSN
FIRSTNAME

LASTNAME
TELEPHONE

ADDRESS
COMPANY
COMPANY_KEY

Fig. 1 One way of visualizing a list. The boxes with labels represent fields
receiving values using ‘Load from list.’

Lists and the CRB
It’s important not to mix the lists’ values with the actual fields (in the
CRB) which have given the list columns their titles. The titles can be

Elements… Lists & Tables 3

regarded as “beacon” connections between the lists’ contents and the
Current Record Buffer. If we select a list line and give the ‘Load
from list’ command, the values in that line will be transferred to
every field that was set as a column title. This means that we will
have copied values from the selected line to its related fields in the
CRB.

4 Lists & Tables Elements…

List Settings

For every list there is a group of settings that help us in our programming. Let’s
begin by looking at the most important ones.

#LN

#L

Fig. 2 #L and #LN in a list

#L
The #L variable contains the ‘current line’ number. When the user
clicks on a list field in a window, the value of #L for the field’s list
will be set to this line. (We can safely assume that #L is the line the
user has clicked on. The field procedure is run directly after #L has
been set, anyway.) Many commands, such as ‘Load from list,’ ‘Insert
line in list,’ etc. use #L unless otherwise specified. Remember that
‘Search list’ changes #L to the line that satisfies the search criteria.
Each list has its own #L, so you must check what Current list is when
#L is being modified or its value is being used.

#LN
The #LN variable tells us how many lines the current list contains.
This number also corresponds to the line number on the last line of
this list. If, for example, you wish to find the last line in a list, #LN
can be of service. To modify #LN, you have to add or delete lines
from the list.

#LM
The #LM variable limits how big a specific list is allowed to be. It is
usually set to around 10 billion, so it shouldn’t give you any
headaches. However, we can use it to keep lists from becoming too

Elements… Lists & Tables 5

large. When the user is allowed to have a say in how to set up a list,
we risk having the whole datafile fed into it; the lists gain weight
dramatically. This may be avoided by using the #LM variable. When
#LN (number of lines) becomes greater than #LM (maximum
number of lines permitted), every command that automatically builds
lists will abort. This applies to the ‘Build list from file’ command,
and a number of others. There are other settings, and we’ll take a
closer look at them later on in this chapter.

6 Lists & Tables Elements…

Manipulating Lists

Creating and pointing to a list

We can use one of the eight built-in lists, #L1–#L8, or generate (i.e. declare) one
ourselves. We create global lists as a field in a ‘Memory Only’ file, or as a Library
variable (in v2.x). Lists that are only needed within the same format (menu or
window) should be declared as format variables. In a simple procedure we just
need to create the list as a local variable. Most list commands only work with one
list at a time, which is why we have to point out which list we wish to work with.
Here we use ‘Set current list (List name),’ which specifies the name of the list we’ll
be working with. The #CLIST variable always shows us the name of the Current
list.

Defining a list

It’s about time we decided on the contents of the list. It can use any sort of field
from any file format, whether connected or not. We use the ‘Define list’ command
to include whatever we want on the list. Naturally, the list is deleted in the process.
In the interests of simplicity, we can key in the name of a file format in the list
definition, thus setting all the fields (in the file format) as titles for the columns.

Building a list

In principle, building a list is simplicity itself. The process consists of finding
records in a certain order and copying selected field values into the list as the
records appear. We normally use one or more search criteria to decide which
records to read in – for example, using ‘Set search name.’ We have already decided
which values to insert in the list by using the ‘Define list’ command. When a
record has been found, this means that we have a set of field values in the CRB.
These may be freely inserted in a new line in the list, e.g. with ‘Add line to list.’
Omnis will see to it that the right values wind up in the right column. Figure 3
illustrates what this process might look like.

Elements… Lists & Tables 7

1

2

5

3

4

Fig. 3 When a list is built automatically, the values from the fields corresponding
to the list definition are copied into the list as each record is located.

Whether the list building takes place by using ‘Add list’ within a loop or by
choosing the ‘Build list’ commands, the principle remains the same. We can call
the former, “procedure-controlled” and the latter, “automatic.” The difference is
that automatic list building takes care of all the procedure commands that you
would have placed in the loop yourself. Let’s take a closer look at this.

Procedure-controlled building

Procedure-controlled list building puts a tool of great potential in the developer’s
hands, and it isn’t difficult to use either. We use a procedure with an ‘Add line to
list’ command inside a loop. The only thing you need to make sure of is that the
fields that were set up in the list definition have the correct values when ‘Add line
to list’ is carried out. This means using familiar commands like ‘Find,’ ‘Next,’
‘Calculate,’ etc. Calculations or searches are often placed inside the loop.

Show Character set 1

Set current list #L1
Define list {#S1,#1}
For #1 from 33 to 255 step 1

8 Lists & Tables Elements…

Calculate #S1 as chr(#1)
Add line to list

End For

List with character set (1)
This procedure builds a list that displays the computer’s character
set, i.e. all the letters with their corresponding number. The loop
ranges from 33 to 255. For every repetition we place the character
corresponding to this number in the #S1 variable, which is then
placed in the #L1 list.

Find names using contents of #S1 2

Set current list #L1
Define list {C_LastName }
Set main file {fCustomers}
Calculate #1 as len(#S1)

Find on C_LastName {#S1}
While mid(C_LastName,1,#1)=#S1

Add line to list
Next

End While

Redraw windows

Search list (2)
The example in procedure 2 builds a list of records in fCustomers
where C_LastName begins with the letters that #S1 contains. The
#S1 variable thus functions as a search code for C_LastName. If the
user types “Jo” in #S1, the list will receive names such as Johnson,
Jones, Jordan, etc. This procedure works very quickly, beating out
v1.2’s ‘Build list from file (use search).’

Elements… Lists & Tables 9

Automatic list building

Omnis can virtually build us a list automatically – by using the ‘Build list from
file’ command, for example. It works like this: Omnis goes through Main file in the
order of the designated indexed field and adds a new line to the list whenever a
record is found. Any records in connected files are called up during the process, so
we can easily retrieve values from fields in different connected files and place them
in the same list. This requires that Main file be set to the file at the bottom of the
connection hierarchy. The logic here is the same as for the ‘Find’ command. This
also means that when building lists automatically, we should only use fields from
connected files that are directly above each other in the hierarchy. The procedure
looks like this:

Build list with connected records 3

Set current list #L1
Define list {fChildren, fParents}
Set main file {fChildren}
Build list from file on C_Name
Redraw windows

After Procedure 3, list #L1 will contain values from the connected
records in both files.

Expansions
There is no reason to get stuck at this point. We can go on to build
the list using search criteria with fields from the parent file.
Similarly, we can sort the list according to fields in the parent file. It
isn’t necessary to add fields in the list definition that are part of the
search criteria. The search itself decides only which records to read
in and in what order, whereas the list definition decides which values
to insert in the list every time a record is retrieved.

10 Lists & Tables Elements…

Find connected records 4

Set current list #L1
Define list {C_Name,C_RSN}
Set main file {fChildren}
Calculate #1 as P_RSN
Set search as calculation {P_RSN=#1}
Build list from file on C_Name (Use search)
Redraw windows

Find connected records (4)
If, for example, we are in the window for the fParents file, Procedure
4 can find the connected records in fChildren. The field P_RSN
contains the Record Sequence Number of fParents.

Find record represented in selected list line 5

If #DCLICK
Set current list Fols_Connected_Children
Load from list
Single file find on C_RSN (Exact match)
Redraw windows

End if

Find record represented by the selected line in the list (5)
If the user double-clicks on a line in the list, a field procedure like
Procedure 5 will be able to find the appropriate record in the child
file. (The Fols_Connected_Children list is a format variable, and its
declaration is not shown here.)

Main file and Current list
I had better mention the fact that both Main file and Current list are
stationary objects which are normally not changed without issuing
the ‘Set main file’ or ‘Set current list’ commands. That’s why it isn’t
necessary to specify Main file and Current list in each of these
procedures; once is enough. However, both commands have been
included in the procedure examples to make the code unambiguous.

In practice, this means not having to worry about whether they’ve
been set properly for the procedure in question – if you’ve set them

Elements… Lists & Tables 11

yourself. For example, you can place a ‘Set main file’ command at
the beginning of every procedure that has one or more Main file-
dependent commands. When the procedures make sure that
everything is in place, the code will be nice and stable.

Editing lines in a list

Usually the developer manipulates whole lines at a time. ‘Add line to list’ adds a
set of values to the end of the list, and the number of lines (#LN) increases by one.
#L remains unchanged. ‘Insert line in list’ inserts a set of values in the designated
line. The rest of the lines are displaced downward by one line with no loss of
content. ‘Replace line in list’ replaces the designated line with the current values of
the fields specified in the line definition.

Adding a line
Figure 4 shows us how a whole set of values (from the fields in the
CRB) are placed at the end of a list when the ‘Add lines to list’
command is used.

#L

1

#L

2

Fig. 4 Adding a line to a list

12 Lists & Tables Elements…

#L

#L

1 2

3 4

Fig. 5 Inserting a line in a list

Inserting a line
Figure 5 shows what happens when the ‘Insert line in list’ command
is carried out. The current line is moved down a notch, and the new
set of values is inserted in its place. #L remains unchanged during the
operation.

Moving lines
Whole lines can be moved from one list to another by using ‘Load
from list’ and ‘Add line to list.’ The fields in the CRB become a
buffer. Only the common fields in the list definitions are transferred,
so in this case both lists should be the same.

Merging lines
The ‘Merge list’ command “bakes” two lists into one. This is a useful
command when moving many lines between lists. For one thing, it is
quick; for another, the CRB remains unchanged. Current list is the
list that receives values. If we want, we can tell which lines should be
included by resorting to a search format or a search calculation.

Elements… Lists & Tables 13

Deleting a line
The ‘Delete line in list’ command removes a given line and moves up
the lines below it, so that #LN decreases by one. The #L variable
doesn’t change value unless it marks the last line in the list. If it does,
#L will be equal to the new #LN, which is one (line) less. The ‘Clear
line in list’ command only deletes the values in the designated line so
that the latter remains empty. In other words, ‘Clear line in list’
doesn’t alter #LN.

Editing single values in a list

There are times when you will only want to extract or alter a few of the values in a
list. There are several ways of going about this.

Replace line in list 6

Define list {B_RSN, B_Text, B_Number, B_Boolean)
Build list… ;; Build up contents of list

Replace line in list {3 (,#S1,,"1")}

Replace line in list (6)
The ‘Replace line in list’ command can change selected field values
in a specific line in a list while leaving the other list values
untouched. The fields (or values) to be inserted are enclosed in
parentheses, and their placement is determined by the use of
commas.

In procedure 6, value of the #S1 variable is inserted as a list value in
column ‘B_Text,’ line 3, and the list value in column ‘B_Boolean’ is
set to 1. The commas separate the columns in the list definition, and
this indicates where the values should be inserted.

Calculate #L1(column,row) as…
It is possible to change values in a list directly, one at a time. To
point to the right cell, we must specify the two coordinates, which are
the column number and the row number. This method uses numerals
only, and doesn’t take into consideration any field (column) names.

14 Lists & Tables Elements…

Using the ‘Calculate’ command, we change the value in the second
column, third row of the #L1 list in the following way:

Calculate #L1(2,3) as "New Value"
; Syntax: Calculate listname(column,row) as Value

Load from list
Likewise, ‘Load from list’ can read in selected list values by
designating the line number and column(s) by position. This is done
by correctly placing the fields to receive these values in relation to
the order of the fields in the list definition. The columns are
separated by commas. Try this:

Load from list {3 (,#S1,#1,)}

In this example, we copy the values from line 3, columns 2 and 3,
into #S1 and #1, respectively. (In the embedded parenthetical
expression, the first comma separates the second column from the
first; the last comma separates the fourth column from the third.)
Within calculations you can also use the ‘lst’ function, which has the
following syntax:

lst (listname, line number, column title)

This represents a single value in calculations. Since Omnis will
locate the right list value for the designated field (i.e. the column
title), the developer doesn’t need to specify the column position. This
is how to read the value of the ‘#S1’ column, line 3, in list #L1:

lst(#L1,3, #S1)

Automatic editing control (Local)

There is a very simple way of saving some time when you have a list and want the
user to be able to edit its contents. Place the fields to be edited as Entry fields in the
window. Assign the List field the lowest window field number (the window field
sequence within the window), and afterwards assign window field numbers an
uninterrupted sequence. Example: the List field is field number 17, and the Entry
fields are given field numbers 18, 19, etc. The ‘Local’ option in each Entry field
must be checked off. This means that the list values will automatically be

Elements… Lists & Tables 15

transferred to the corresponding fields when the user clicks on a line, and during
Enter data, any changes will be updated in the list. The developer should allow for
the user to add new lines by creating a pushbutton, which would run an ‘Add line
to list’ command.

Saving the list contents to disk
When the user is satisfied and has clicked on OK, the developer can
allow a subsequent procedure to save the changes in the list to disk.
If the list is part of a file format being saved to disk, an ‘Update files’
command is all that’s needed. However, if the lines in the list
correspond to records in a Read/Write file format, you go through the
list line by line, read in the corresponding records, and compare them
to see if there are any differences. If there are, the values from the list
should be transferred to the CRB and the new edition of the record
should be saved to disk.

Update the lines of #L1 to records of fChild 7

Enter data
If flag true

For #L from 1 to #LN step 1; Steps through all lines in list

Single file find on C_RSN {lst(#L1,#L,C_RSN)}
If flag false ; The line has no corresponding record

Add a new record
Else

Difference between CRB and line in list? (Procedure 8)
**Update record on disk

End If
End For

Updating lines in a list to records in a file (7)
Our example uses list #L1, which contains fields from fChild.
Initially, the list is built by using values from the datafile (the ‘Build
list from file’ command), after which the user is allowed to edit it
(under Enter data).

If the line in the list is entirely new, we insert it as a new record. We
have to read in the values after ‘Prepare for insert,’ because this
command clears the field values in the main file. If we had
transferred the values from the list before the ‘Prepare for insert’
command, it would have caused the field values in Main file to
vanish.

16 Lists & Tables Elements…

Adding a new record based on a newly added line
If a line is totally new, Omnis will not be able to find a cor-
responding record in the data file. Thus a ‘Find’ or ‘Single file find’
command resulting in ‘flag false’ would suggest that the line has
been added by the user. However, we can also use the RSN,
represented here by B_RSN. Generating sequence numbers is not the
user’s responsibility, which is why B_RSN will be zero in lines
added by the user. It’s up to the developer to choose an appropriate
method. Main file’s part of the CRB will be cleared if a failed ‘Find’
or ‘Single file find’ occurs, but this has little practical bearing on the
procedure as we have written it.

If the procedure discovers that the record already exists, we check to
see whether there is a difference between the line in the list and the
field values for the corresponding record, which is now in memory:

Difference between list line and CRB? 8

Local variable DIFFERENCE (Boolean)

If C_Text<>lst(C_Text)
Calculate DIFFERENCE as 1

Else If C_Number<>lst(C_Number)
Calculate DIFFERENCE as 1

Else If C_Boolean<>lst(C_Boolean)
Calculate DIFFERENCE as 1

End If

If DIFFERENCE
Quit procedure (flag set)

Else
Quit procedure (flag clear)

End If

Is there a difference between the contents of the list line
and the record in memory? (8)

The procedure has its own separate subprocedure to ensure that the
main procedure doesn’t become too long and complex. By making
use of the ‘Quit procedure’ commands that affect the flag, we get a
call that behaves pretty much like a command. If there is a
difference, i.e. the flag is ‘true,’ we update the record on disk. This is
all done in Procedure 9:

Elements… Lists & Tables 17

Update lines of #L1 to records of fChild 9

Enter data
If flag true

Set main file {fChild}
Set current list #L1
For #L from 1 to #LN step 1

Single file find on C_RSN {lst(C_RSN)}
If flag false

Prepare for insert
Load from list
Update files

Else
Call procedure vChild/20 {Difference, #L1 and CRB?}
If flag true

Prepare for edit
Load from list
Update files

End If
End If

End For
End If

Multiple line selections in lists

When the ‘Show selected lines’ option has been checked off for a List field in a
window, the user can select several lines at a time. Omnis has a number of
commands that make it possible to fully exploit this feature. The ‘Save selection
for line(s)’ command saves the selection of lines to their own buffer in memory,
which follows the list. If the list is saved to disk, this extra buffer will be stored
together with the current line selections and the contents of the list. Among other
things, the buffer is easy to use if the user wants to undo and retrieve the original
selections (‘Swap selected and saved.’)

"Save"-buffer List

18 Lists & Tables Elements…

Fig. 6 A list and its “save” buffer for line selections

Logical operations with the ‘Save’ buffer
Omnis gives us a choice of commands which are meant to make
logical comparisons between the “save” buffer and the selected lines
in a list. However, the logic of AND, OR and XOR often escapes
those who are not used to programming arithmetically with these
operands. So we will take a closer look at the nature of each of these
comparisons.
Figure 6 shows the list and the buffer behind it. The list itself shows
at all times which lines the end-user has selected in the window in
question, while the buffer behind it shows which lines were selected
the last time the ‘Save selection for list line(s)’ command was
executed.(The “save” buffer itself will not be affected by the
‘AND/OR/XOR selected and saved’ commands.)

AND selected and saved
The operator ‘AND’ requires that the line must have been selected
both in the “save” buffer and in the list itself for the line to be
selected as the command is executed. If a line is selected in the list
itself only or in the “save” buffer only, the line will be left
unselected.

AND

Fig. 7 AND selected and saved

OR selected and saved
The operand ‘OR’ only requires the line to be saved in the list itself
or in the buffer. If the line has been selected in both places, it will
remain so after the command has been carried out. In other words,
this command is rather inclusive.

Elements… Lists & Tables 19

OR

Fig. 8 OR selected and saved

20 Lists & Tables Elements…

XOR selected and saved
XOR stands for “Exclusive OR.” It will not select the line if it has
been selected both in the list itself and in the buffer; in every other
respect it behaves just like OR. This means that the line must either
have been selected in the buffer or in the list itself, but not in both
places. The lines in question will be have been selected when the
command has been executed.

XOR

Fig. 9 XOR selected and saved

The woes of line selecting

Let’s take a closer look at a problem having to do with the selection of several lines
in an ordinary List field. When a user holds down the CMND or CTRL keys, he can
select lines one at a time without clearing the previous selections. However, if he
clicks without holding down one of these keys, all the other selections will
disappear. This can be very irritating, because making selections is fairly
demanding work, and this kind of accident is not all that uncommon. We should
make our own “Undo” pushbutton to use in recovering the lost group of selections.

And here to save the day…
Offhand, it might appear that all we needed to do every time we
clicked on a line was to use the ‘Save selection for list lines’
command. Alas, it’s not that simple. This only works the first time
the user clicks on a line. What we really want is an “Undo”
pushbutton that still works after the user has clicked more than once.

The procedure for the List field 10

If #CLICK
Calculate Window_list as Undo_list
Set current list Window_list
Save selection for line(s) (All lines)

Elements… Lists & Tables 21

Set current list Undo_list
Restore selection for line(s) (All lines)

End If

The procedure for the List field (10)
Let’s imagine that we have placed a list called ‘Window_List’ in a
window. We want to safeguard the previous set of selected lines (the
last time the user clicked on a line), so that the user can undo if he
inadvertently deselects all the lines. We have to save the selections
every time the user clicks on a list line, to accommodate the undo
function each step of the way. The main problem is that the user
can’t see that the damage has been done until Procedure 10 is run.
Thus we have no way of keeping the new set of selections from
being saved. The only solution is to use an extra list, to assist the
“save” buffer.

(User selects a line)

1.

New
Old

2.

Calculate Undo_list
as Window_list

New
Old

List shown in window Undo list (used in procedure)

Restore selection
for list line(s) {All lines}

New
New

Store selection
for list line(s) {All lines}

Old
Old

3.

22 Lists & Tables Elements…

Fig.10 A diagramatic description of what happens when the list selections are
stored, as shown in Procedure 10. (The figure starts on previous page.)

Storing the previous selections
Figure 10 illustrates what happens when the user selects a line using
CMND/CTRL-click. First, Window_list is copied over to another list,
called Undo_list here. This is done right at the beginning of the
procedure, before the current set of selections is saved to
Window_list’s “save” buffer. In Undo_list we read in the contents of
the “save” buffer with the ‘Restore selection for list line(s) (all lines)’
command so that it is ready to be transferred. Finally, we save the
current set of selections in Window_list in the companion “save”
buffer.

So we actually have three sets of selections: 1: The active one, which
is always visible in Window_list and which we cannot control with
procedures. 2: The “save” buffer in Window_list, which acts as an
intermediate storage place. 3: The Undo_list itself, which contains
the previous set of selections.

Restore selections 11

If #CLICK
Calculate Window_list as Undo_list (Redraw field)

End If

Restore selections (11)
I have given my “Undo” pushbutton the name “Restore Selections.”
If the user wishes to undo an inadvertent action, he can use this push-
button. It simply copies Undo_list to Window_list, thereby restoring
the previous selections. Figure 11 illustrates how this takes place.

Elements… Lists & Tables 23

Old

Calculate Window_list
as Undo_list

3. Old Old
Old

List shown in window

Old
Old

Undo list (used in procedure)

New

Restore selection2.

CLICK, OH NO!

New
1.

Fig. 11 Our end-user, having fallen prey to bad luck, is saved by the “Restore
selections” pushbutton.

24 Lists & Tables Elements…

Displaying Lists in Windows

When a list has been defined and filled with data, it can be displayed in a number
of interesting ways, each one meeting a specific need. It is important here to
differentiate between fields and file formats on the one hand and fields in windows
on the other. We call the latter “window fields”; they are used in windows. Entry
fields, List fields and Display fields are all window fields. The various window
fields allow the end-user to view and edit fields from the file formats.

The main purposes of List fields
Except for Combo boxes (v2.x), window fields for lists do very little
with the lists they contain. Their purpose is merely to serve as a link
between user and procedure. The procedures behind the List fields
determine what will happen when the various fields report that the
end-user has now clicked on a field, double-clicked, or selected a
line, etc. Values from the list have to be fetched using commands in
the procedures (for example, using ‘Load from list’). It is all in the
hands of the field procedure. An important exception to this is #L,
which is always set directly when the user clicks on a list line.
Moreover, the end-user has control over which lines are selected,
provided the ‘Show selected lines’ option has been switched on.

“Simple” List fields

The list field was the first field to show up in Omnis, and is probably still the most
popular one. Both easy to learn and easy to use, it provides a good overview of the
list contents. If you can’t see all the contents at once, just use the vertical or the
horizontal scroll bar.

Searching manually in the List field
When the cursor is placed in a list field, we can key in the first
couple of letters that appear (on screen) in the line we want. A search
of the list will then begin. The first suitable line will be selected, and
Omnis will scroll to it. Such searches are just the thing for lists under
approximately 100 lines, especially if they haven’t been sorted. We
can also move up and down the list using the arrow keys, or by using
the “+” and “-” keys to find other list lines that match our search
letters.

Elements… Lists & Tables 25

Selecting several lines
When ‘Show selected lines’ has been checked off, the user can select
one or more lines. If the cursor resides in the list field (which it will
if the user has clicked on the list field, for example) a continuous
block of lines may be selected by holding down Shift when selecting.
Holding down CMND or CTRL allows us to select one line at a time
by clicking on them. If (using CMND/CTRL) you click on a line that
has already been selected, this will de-select it. However, if you click
on a line without holding down any of these keys, you will annul all
the other selections, leaving the only line selected the one you just
clicked on. This can be a galling experience if you do this in-
advertently after painstakingly selecting, say, 10–15 lines from a list
of 50!

Fig. 12 “Simple” List field

Advantages

• Can show the whole list at once with selections without forcing
the user to “open” anything.

• Selections made by a single click.

• Easy for the user to understand.

• Generally faster than tables.

• Can use letters, the +/- keys, or arrow keys for searching.

26 Lists & Tables Elements…

Disadvantages

• Takes up a lot of room in the window.

• Redraw can take time.

• Not as advanced as tables.

Dropdown lists (Combo boxes in v1.x)

This kind of List field is used a great deal in Windows programs. It provides a
number of options for choosing from the list, which makes it very flexible but
somewhat harder to grasp. The fact is, there are two basic ways of selecting a line.
When you move with the aid of TAB, it might appear as though you were
manipulating a field in a file format. However, this box is actually a place where
we can key in the first couple of letters and in this way single out a list line. The
selected list line is displayed in the box. If we click on the Dropdown list field, a
little window will appear that acts just like an ordinary List field. (Not multiple
choice.) It will close when we select a line (double-click, ENTER or RETURN), or
when we move away from the field by clicking somewhere else or using TAB.

As with the list field, we can move up and down the list using the arrow keys, or by
using the “+” and “-” keys to find other list lines that match the search letters.

Fig.13 Dropdown list (“Combo box” in v1.x)

Advantages

• Takes up very little space in the window.

• Can use letters, the +/- keys, or arrow keys for searching.

• If #L=0, the field will be empty and send a clear signal to the user
that the list has not yet been used.

• From v2.1 on, the number of lines in the “popup list” part can be
increased by as many lines as you wish.

Disadvantages

• The list that appears may overshadow other fields the user wants
to click on, making it difficult to exit the Dropdown list field.

Elements… Lists & Tables 27

• Selections made with the mouse are fussier.

• In versions before v2.1, the number of lines that can be displayed
at the same time in the list field section is limited to 5, regardless
of font style or font size.

• Cannot be used to select several list lines.

Popup lists

This window field works about the same way as a Popup menu. It has all the
advantages of a menu, in that it allows quick selections and takes up less space, but
isn’t always immediately noticeable. If you can’t proceed without selecting from a
list, you should choose a window field type that takes up more space and attracts
more attention. The Popup list can display more than one selected line, which it
does with check marks. The selections aren’t as “fleeting” as in ordinary list fields,
because each line must be selected or deselected one at a time.

Popup lists and popup menus
Confusingly enough, the popup list resembles a popup menu, which
reacts immediately once a line has been chosen and runs the selected
menu line procedure. The Popup list only sends a #CLICK message
to the procedure behind it (and all of the control procedures); it is
then up to this procedure to react to the message.

Fig. 14 Popup list

Advantages

• Takes up very little space in the window.

• Mouse selections are efficient, as with menus.

• If #L=0, the field will be empty and return a clear signal to the
user.

Disadvantages

28 Lists & Tables Elements…

• Only the system font (12 point) can be used. This type of
character takes up a relatively large amount of space. The number
of lines that can be shown all at once is restricted by screen size.

• It doesn’t cut a very striking figure in a window.

Combo boxes

We finally got a real Combo box in Omnis v2.0, i.e. a true combination of a field
and a list. It is more active than the other list fields, because it automatically copies
the list value over to the designated field (in the CRB) as the user selects a line.
The value thus transferred is the one that appears on screen at the beginning of the
list line.

Fig.15 Combo box

Advantages

• Takes up very little space in the window.

• Can use letters, the +/- keys, or arrow keys for searching.

• If #L=0, the field will be empty and return a clear signal to the
user, indicating that the list has not yet been used.

• Provides a direct link between the list values and the field
receiving the value.

• The field (in the CRB) can be edited directly by the user. This
means that the field can receive values that are standard selections
(from the list) in addition to those that are completely new (i.e.
those typed in by the user).

• The ‘Entry field’ part reacts like an ordinary Entry field and
reacts in the normal way to such standard commands as ‘Find,’
‘Next,’ ‘Insert,’ etc.

Disadvantages

Elements… Lists & Tables 29

• The list that appears may overshadow other fields the user may
want to click on; this could make it cumbersome to exit the “list
field” part of the Combo box .

• Mouse selections are fussier.

• Prior to v2.1, the number of lines that could be shown at the same
time in the ‘List field’ part was limited to 5, irrespective of font or
font size.

Field value window for lists

Even though this window is basically reserved for developers, it remains a very
simple way of displaying a list. It is called up with the OPT/RB menu by clicking
on the list name, or by using the following command:

Field menu command: Open Value Window {ListName}

Fig. 16 The Field value window for lists

The Popup menu
In this window, the OPT/RB menu has a lot going for it. This
particular Popup menu can add and remove lines, change selections
and set #L (‘Current line’), all of which come in mighty handy when
testing procedures.

Limitations
In v1.x, the window is only available in Single user mode.(The
Design menu doesn’t have to be on screen.) In v2.x it is always
accessible.

30 Lists & Tables Elements…

Tables

Tables provide another way of displaying lists in widows. They are extremely
flexible and useful, but differ significantly from other list fields. That’s why we
have decided to discuss them separately at the end of this chapter.

About the calculation field

For all window fields custom-made for lists, it’s important to remember to fill in
the calculation field. This is where you decide which values to display, and in what
order. The formatting instructions are set, as is the line orientation (left/right,
distance to next value, etc.). You are perfectly free to adjust the appearance of the
list lines to get them to look just the way you want. A typical example of this is the
‘jst’ function, a good description of which you’ll find in “Reference 1,” pp. 2–24 to
2–29. Most people like columns to be neatly aligned underneath each other, which
makes it important to use a monospaced font in the list (otherwise the letters will
not be the same width). See the chapter entitled “Layout & the User Interface.”

The mechanics of the calculation
Calculations in the list field are not all that different from other forms
of calculation. However, it is repeated for every list line and calls up
its field values from each list line instead of from the CRB. The
fields in the CRB remain untouched, so we needn’t worry about
them. Actually, we can insert anything here, e.g. a Boolean
condition, which can be used to show (or not to show) one or more
letters, depending on the list’s field value. Confusing? Consider this:

…mid("Occupied",1,(A_AppartmentRented=1)*8)…

If the value in A_AppartmentRented equals 1, the value of the
condition (A_AppartmentRented=1) will be 1 (YES), and 1*8 will
obviously (er, uh…) be 8. Thus all eight letters in ‘Occupied’ will
appear in this list line.

Pitfalls
These calculations can take time, especially for long lists. The same
calculation is repeated for each list line every time the window is
redrawn with ‘Redraw windows.’ Long, complicated calculations in
lengthy lists can be cumbersome in the extreme, and then there may
be no point in carrying them out. That’s why as many of these

Elements… Lists & Tables 31

calculations as possible should be done in advance and the results
inserted in the list as values. There is always enough room in
memory to indulge little luxuries such as this, to ensure that our
redraws are fleet of foot.

Suggested ways of using lists

You should be familiar with most aspects of the different kinds of list fields by
now, and eager to make the most of them in your applications. Nevertheless, to
speed you along, the following list should suggest some classical ways of using
lists.

To survey all the records in a file
This should preferably only be done with smaller files. The List field
of choice is the “simple” list field, which can show many lines at a
time.

To display connected records from the file below
Clients linked to a firm is a typical example. You get a nice overview
at a glance.

To present simple options to the user
If a search results in more than one record, you can use a list to
enable the user to decide for himself which record to use. For
example, from a list of clients with the surname “Jones,” you could
choose whichever Jones you wanted.

Free combination of On/Off options
Multiple selections in a list with the aid of CMND/CTRL-click when
the ‘Show selected lines’ option has been set. When many such
Boolean choices are to be made, a List field (preferably a table)
should prove useful.

General auxiliary buffer for complicated procedures
Lists can clean up your procedures by replacing some complicated
“pointer juggling” with their own built-in functionality. For example,
to safeguard the integrity of the parts of a text variable when the text

32 Lists & Tables Elements…

is split up, modified and reassembled, you can temporarily store them
in a list.

Elements… Lists & Tables 33

Displaying Single List Values

Using ‘Load from list’

Values can be loaded from lists to other variables that are shown in the window.
This can be done in separate procedures. The method is handy in cases where you
wish to change the value and, possibly, return it to the list. Omnis can also control
this automatically (see the section entitled “Automatic editing control”).

The ‘lst’ function

This function can be used to read in a single value from a list; and being a function,
it can be placed anywhere in the procedures, in the calculations for most window
fields, and in report fields.

lst(listname, line, fieldname)

The syntax
Here you can state the name of the field (i.e. column) you want to get
a hold of, in contrast to the ‘Load from list’ command, which must
be adjusted by the use of commas. If no list is specified, the current
list will be used. If the line number is left out, #L will be used (the
field name must always be designated).

The ‘lst’ function in procedures
This is a useful function for reading in a single value from a list, but
remember: #L, #LN and #LM still reflect the current list and not the
list designated in the ‘lst’ function.

The ‘lst’ function in windows
Not only display fields can benefit from the ‘lst()’ function. Text in
Pushbuttons, Radio buttons, and Check boxes can all have a ‘lst()’ in
square brackets ([]), providing us with a good way of “flipping” the
text when we have the sort of field procedures that behave differently
in different situations. The various messages can be placed in a fixed
list and shown in the pushbutton text, depending on the ever-
changing nature of the situation (Main file, Enter data, stages in an
incremental entry of data, etc.).

34 Lists & Tables Elements…

The ‘lst’ function in reports
The advantage of using ‘lst()’ in report fields becomes apparent when
lists stored in field formats are presented in reports. We need to have
one ‘1st’ field for each list line that is displayed. In addition, we
should test for the length of the list, so as not to end up with too
many blank spaces between the records in the report. (See the chapter
on reports.)

Elements… Lists & Tables 35

Lists Stored in Datafiles

Lists stored in data files together with their file format have their advantages and
disadvantages. First and foremost, they can be read in extremely quickly, and will
help save time when fixed lists are loaded. Their flaws become apparent when you
try to change them, because then the whole list must be updated. The greatest
limitation involves searching the contents of the list. To accomplish such a search,
the developer must write a procedure that locates records in the file one at a time
and searches every record in the file. This usually takes quite long. For small lists
(up to an 200 lines), there is still a great advantage in being able to use lists built
from indexed files; it’s quick enough, and a whole lot more flexible.

What is saved with the list?
When a list is saved to disk, its value is naturally saved in the lines,
but we also save all the information and settings that apply to each
list, which are the following:

• The selected lines in the list itself and in the “save” buffer

• #L, #LN and #LM

• The list definition, i.e. the titles of the columns

The ‘Prepare for insert’ commands clears all these settings and
deletes the contents of the list. This means that every new list in the
file format is completely “clean.”

Areas of use
Most people perceive the main function of lists stored in data files to
be the registration of information chronologically. This is all the
more true when the content doesn’t need to be analyzed or
manipulated further, or when the number of registrations (or any
field type) varies from record to record.

In addition, it is helpful to be able to place fixed lists (price lists, etc.)
in a file format and save them on disk. Reading them will go like
greased lightning. Depending on which record we locate, we get
completely different lists. The field List_Calculation could contain a
‘jst(…)’ expression that would be used to format the list lines when
the list is displayed in a window. If we put the expression ‘eval

36 Lists & Tables Elements…

(List_Calculation)’ in the List field calculation, the “formatting
calculation” stored with the list (in the file format) will apply. If the
list’s calculation and titles are placed in their respective text fields,
we’ll have a handy file format for every kind of list.

Elements… Lists & Tables 37

Lists within Lists

At first sight, lists within lists can appear inordinately complicated. Actually, they
aren’t. The setup provides for a three-dimensional (instead of a two-dimensional)
table. Imagine a pile of ordinary tables placed on top of each other. The definition,
selected lines, contents, and all the other information concerning the list is stored,
together with the “sublists,” on each line. In other words, we can have totally
different lists in each line. This resembles saving a list to disk. Defining such a
“big” list is easy; just check the ‘Store long data’ option. It is immaterial which list
is defined first – the “big” one or the “little” one.

Retrieving single values from lists within lists
The easiest way to retrieve a single value from a big list is to use the
‘1st’ function in two stages. First we copy the sublist from the big
list’s line into an ordinary list, and then we fetch values from this list
in the usual way. See the following:

Calculate #L2 as lst(#L1,1,#L2)
Calculate #S5 as lst(#L2,1,#S5)

‘Load from list’ works the same way as ‘lst’ in this respect. It takes
two steps to retrieve a single value here as well. Tables are the only
window field type that can show lists within lists directly (see the
section on tables).

Areas of use
You can use lists within lists to handle a pile of invoices (each sublist
contains the invoice items) or a list of employees and (for example)
the courses each of them have attended.

38 Lists & Tables Elements…

Redrawing Lists

You shouldn’t redraw lists and tables unless it’s absolutely necessary; it takes a
long time and can irritate the user. You may, however, carry out any other redraws
whenever you want, because they take place so quickly that the user doesn’t notice
anything. A rule of thumb is that you should only redraw lists (and tables) when a
line has been edited, deleted, or added. This means that selections from lists
shouldn’t result in the redrawing of the whole window, only the fields directly
affected by the selection. Any window with both fields and lists should have a
“redraw” procedure that doesn’t include the list, a procedure that can be called at
any time and that will replace ‘Redraw windows’ in many cases.

Redraw named fields

If we specify two field names in this command, Omnis will carry out a selective
redraw of all the fields between these two (including the specified fields
themselves) in the order of the fields within the file format. This is the same order
in which the fields appear within the ‘Field Names’ window (CMND–9), which in
turn means that this window can be used to ensure that the right fields are included.
The example below shows the list being defined as field number 11 within a file
format. We have to use two commands to keep from including the list in the
redraw.

Redraw with field names (file format field numbers) 12

Redraw named fields Field_01 to Field_10
; The list is Field number 11 in the file format

Redraw named fields Field_12 to Field_30

Redraw with field names (12)
The advantage of the ‘Redraw named field’ command is that it
doesn’t depend on the order of the fields in the window, which can
easily be changed. This kind of redraw will not be affected by a
change in the window fields sequence. By the same token, it will not
include particular window elements, i.e. text in Pushbuttons, Check
boxes, Radio buttons and “free” background text. These elements
must be redrawn using ‘Redraw numbered fields’ or ‘Redraw
windows.’

Elements… Lists & Tables 39

Redraw numbered fields

As you know, we can also allow for redraws with a selection of window fields.
This means that the window fields in the window will be redrawn. If the same field
(in the CRB) turns up in window fields not included in the range stipulated by this
command, nothing will happen to the other window fields.

Redraw with window field numbers 13

Redraw numbered fields 1 to 15
; The list is field number 16 in the window

Redraw numbered fields 17 to 30

Redraw with field numbers in the window (13)
This way of doing a selective redraw is extremely sensitive to
changes in the window. If new elements are added, the developer
will often have to change the order of the fields, abruptly making the
redraw procedure unreliable. The advantage of ‘Redraw numbered
fields’ is that it also includes calculations in square brackets
throughout the window, in addition to all sorts of settings that have a
bearing on the window fields (e.g. #L).

40 Lists & Tables Elements…

Binary Search in Lists

The ordinary ‘Search list’ command is a thorough but sluggish command. It starts
from #L or from the top of the list and works downwards, line by line. Although it
works, it isn’t the best way to get results. The list is usually sorted according to a
specific field, which can be used to do a binary search. Binary searches are much
quicker than line-by-line (linear) searches. Omnis uses this very same principle
when it peruses an indexed field in the datafile.

The principle
We compare the search text with the text in the indexed (i.e. sorted)
field in the list, and determine whether the search text is “larger” or
“smaller.” The former means that the line with the desired value is
found after the line it is now being compared to. The latter means
that the desired lines are found before the line we are now searching.
The comparison is in terms of ASCII or ANSI – the numerical value
of the letters in the fields. We start with the line in the middle of the
list. If the search text is “larger,” this tells us that the line we want is
somewhere in the bottom half. If it is “smaller,” it will be in the
upper half. We proceed by testing the line that is in the middle of the
relevant half. The value in this line is once again compared to the
search text, and we find out which half it lies in, within the area we
have narrowed our search down to. We continue halving the list until
we know exactly where the desired value lies.

Practical solution
The following is a general procedure that can replace ‘Search list.’ It
does an automatic search of Current list. To call it, we must send
values to the following parameters:

Pa_FIELD (Field name)
Pa_SEARCH_VALUE (National)

Pa_FIELD is the field we will use to search the list, which must be
sorted according to this field. And the field has to be part of the list
definition. Pa_SEARCH_VALUE is the search text, i.e. the value the
sorting field should have. When we call the procedure, the
parameters are entered in the following manner:

Call procedure pBinarySearch/1 (NAME, "George")

Elements… Lists & Tables 41

Binary search on current list 14

Parameter Pa_FIELD (Field name)
Parameter Pa_SEARCH_VALUE (National)

Local variable LINES_START (Short number 0 dp)
Local variable LINES_END (Short number 0 dp)
Local variable LINES_MIDDLE (Short number 0 dp)
Local variable LENGTH (Short integer (0 to 255))
Local variable VALUE (National)
Local variable GOT_IT (Boolean)

Calculate LINES_START as 0
Calculate LINES_END as #LN
Calculate GOT_IT as 0
Calculate LENGTH as len(Pa_SEARCH_VALUE)

Load from list {#LN}
Calculate VALUE as mid(Pa_FIELD,1,LENGTH)
If Pa_SEARCH_VALUE>VALUE

Sound bell
Quit procedure (flag clear)

Else If Pa_SEARCH_VALUE=VALUE
Calculate GOT_IT as 1
Calculate LINES_MIDDLE as #LN

Else
Repeat

Calculate LINES_MIDDLE as LINES_START+int((LINES_END-…
…LINES_START)/2)

Load from list {LINES_MIDDLE}
Calculate VALUE as mid(Pa_FIELD,1,LENGTH)

If VALUE>Pa_SEARCH_VALUE
Calculate LINES_END as LINES_MIDDLE

Else If VALUE<Pa_SEARCH_VALUE
Calculate LINES_START as LINES_MIDDLE

Else If VALUE=Pa_SEARCH_VALUE
Calculate GOT_IT as 1

End If

Until GOT_IT=1|(LINES_END-LINES_START)<=1
End If

If GOT_IT=1
Deselect list line(s) (All lines)
Select list line(s) {LINES_MIDDLE}
Calculate #L as LINES_MIDDLE

42 Lists & Tables Elements…

If mid(lst(#L-1,FIELD),1,LENGTH)=Pa_SEARCH_VALUE|…
…mid(lst(#L+1,FIELD),1,LENGTH)=Pa_SEARCH_VALUE

OK message {Several lines were found.}
End If
Quit procedure (flag set)

Else
Sound bell
Quit procedure (flag clear)

End If

But there’s a catch to it –
If the search criterion fits several lines of the list, we won’t be able to
know for sure whether the correct line has been found. The search
should then continue within the same area, but with stricter search
criteria. For example, we can search linearly on each side of the
initial line until we find one that is a perfect match. But this should
be up to the one who will be doing the programming to decide.
Searches more advanced than simple, localizational ones should be
carried out on the datafile, and not in lists.

Elements… Lists & Tables 43

Tables

What is a table, anyway?

Tables are the most flexible way of displaying lists in windows. They are a type of
window field meant for lists, just like “simple” list fields, Popup lists, Dropdown
lists, etc. Tables, however, are more flexible and more powerful in use, because
they can contain all sorts of window elements in their lines. This opens up a wealth
of options for creating good user interfaces. Tables are one of the most exciting
features of Omnis 7.

Fig. 17 A downright boring way of using a table

How they work
The list to be shown in the table must, of course, be defined and
generated, just like any other list. Unlike other kinds of list fields, the
table allows you to use a sort of “window area” in each line where
you can insert Display fields, Entry fields, lists, text, pushbuttons,
etc. at will. This is the table line; whatever you can do elsewhere in
the window you can also do here. The area is repeated below, in
synch with the number of lines in the list.

Values in fields
Everything you put in a table line (during Design mode) is repeated
each line down the list. Fields that are part of the list definition for
the table’s list get the correct value from their respective lines. List
values can also be altered directly under Enter data, provided the
‘Enterable’ option has been checked off. However, expressions set
off in square brackets ([]) in bits of free text, pushbuttons, etc.
retrieve their values from the CRB.

Lines
In tables, the #CLICK message variable is sent whenever the user
changes lines or clicks on another field within the same line.

44 Lists & Tables Elements…

Happily, #LCHANGE comes to our rescue, making it clear what the
user has actually done. Clicking on a different window field within
the same table line will trigger a #LCHANGE, which you can take as
an indication that the user has not moved to another line, just to
another field. In most other respects, the table fields work just like
any other list field.

Enterable
When ‘Enterable’ has not been checked off, the user can highlight
only one or more line areas. When ‘Enterable’ has been checked off,
the user can use the line areas as though they were a normal part of
the window. This means that the values in Entry fields can be edited,
pushbuttons pressed, menus used, etc.

Auto extendable
For this function to work, the line area has to contain at least one
Entry field (or a field that houses the cursor. See the chapter entitled
“Sequence of Procedures”). When the user presses TAB to exit the
last Entry field in the bottom row, a new line is automatically
inserted. That’s it. You can’t delete lines the same way; to do that,
you must create your own pushbutton.

When a list is ‘Enterable’ and ‘Auto extendable,’ it is advisable to
start with one line in the list instead of an empty list. It will be easier
to “tab” one’s way out of the last field (and write new lines) when
one already exists.

Elements… Lists & Tables 45

Window elements in tables

Tables will vary greatly in terms of appearance and function, depending on which
elements we decide to put in the lines. We should bear this in mind, since it can
lead to some pretty exotic results. Let’s take a look at how the most common
window elements shape the table.

Entry fields
Fields from the list definition can be inserted, making it possible to
edit the list values directly. ‘Entry field (Border)’ gives a nice square
pattern. All other aspects of Entry fields apply here as well, provided
Enterable has been checked off. By holding down shift and dragging
from the left edge, you can extend vertical lines with which to split
the table into suitable sections or, alternatively, make it look like a
spreadsheet.

Tables can be used, among other things, to edit records to be entered
or updated in a child file. When the user is finished, we transfer the
values in the list to the data file as previously shown in this chapter.

Display fields
When we use Display fields in tables, we can show their contents in
proportional fonts (e.g. Helvetica, Garamond, etc.), and still have
them in perfect vertical alignment. And we don’t have to use the ‘jst’
function to do so either (which we must in ordinary list fields).

Check boxes
A set square pattern of Check boxes can be used as a powerful
selection console. These may be combined with a list defined with
Boolean fields and a fixed number of lines.

Picture fields
We are finally able to display pictures stored in lists. Just put a
Picture field inside a table line.

Pushbuttons and Button areas
Complexes of pushbuttons in fixed square patterns are useful when
you want to make something reminiscent of agendas and calendars.
All of the pushbuttons will be copied into the lines below and are

46 Lists & Tables Elements…

really the same pushbuttons all the way, but you can use #L to adjust
the procedures’ different reactions to the different lines.

Popup menus
The menus behave normally, but in reality it is the same menu that
recurs in every line.

Text and graphics
Text is copied into every line below. However, you shouldn’t use
calculations in square brackets to alter the appearance of different
lines, because the latter derive their values from the CRB. Graphics
are treated the same way, which means that different symbols and
markers can be used to improve the layout of the tables. There’s
nothing wrong with inserting gray-tone graphics and three-
dimensional effects in the tables either. And remember: the dividing
lines and the border itself can have different patterns.

List fields and tables
For the first time, we can display and edit lists within lists in our
windows. (The list definition of the main list must contain the sublist,
and the option ‘Store long data’ must be checked off in the ‘Define
list’ command.) We can insert all sorts of list fields in the table –
including other tables. Unfortunately, if we want to edit the sublists’
contents, we have to use (even in v3.x) ordinary list fields and a
custom-made editing window. The technique isn’t all that
demanding; and it’s useful, to boot.

Elements… Lists & Tables 47

qCHhcq
Tables eat List fields for dinner!

Program them with care and they might even
fetch your slippers for you.

qCcq

Section 5: Data Input

Chapters:

1. The Ins & Outs of Enter Data

2. Import & Export

Import & Export

Introduction.. 2
File Types.. 3
Standard Export Tool.. 6
Export via Reports .. 8
Exporting to Word Processors .. 9

Assembling the file manually
Controlling layout in other programs by using codes
Exporting with the space character

Sequence Numbers .. 11
Importing Connected Files.. 12

Principle for independent import
Importing hierarchically connected files
 with the help of a separate file
Importing hierarchically connected files
 with the help of a list
How to avoid the problem altogether

The ‘Import Field From File’ and ‘Import Data’ commands 20
Import data
Import field from file

Update or Insert New Record? .. 22
See if the record exists
A successful search
Update or add record?
To save or not to save?

2 Import & Export Data Input

Introduction

Import and export is one of the ways in which large amounts of data
may be transferred from one application to another, from one
program to another, or from one type of machine to another. This
kind of data exchange helps integrate and coordinate a variety of
platforms. The ability to import is essential in making the transition
from one database to another. Export is inherently no less important,
as it provides an “exit” option.

Making the transition to other databases
It might seem paradoxical that a database should ease
the transition to a “competitor,” but this provides a
marked element of safety. It makes it possible to
switch platforms without the necessity of writing in all
the data one more time. Moreover, a database with
powerful import tools will be able to handle data from
almost any kind of program.

External tasks
Sometimes we will need to carry out special tasks that
lie beyond the province of a database. This might
involve advanced statistics, special graph plotting, or
demanding desktop publishing. We can turn to other
special programs and export the data to be used, or we
can resort to an automatic exchange of data. Both
Windows and Macintosh platforms have advanced rou-
tines in their operating systems for coping with this
(DDE, OLE, Apple Events, and Publish-and-subscribe)
– all of which support Omnis; we’ll come back to this
in another chapter.

Data Input Import & Export 3

File Types

“Standards are so nice, we made lots of them.” — In our quest for
greater efficiency (and less extra work), file standards have been an
elusive but much-sought-after goal. As it happens, there are few true
standards, partly because of the wealth of programs and types of
documents, and partly because software manufacturers can’t agree
on the rules of the game. Nevertheless, a number of simple,
relatively widespread file types have turned up, and many programs
are able to make use of them. The whole rationale behind common
file types when importing and exporting data is based upon the fact
that programs at both ends must be able to use them. The sender
must be able to save the data to disk in accordance with the rules for
the file type, and the receiver must be able to read them in accor-
dance with those same rules. The structure of each file type is
important, so we will discuss the various types briefly. Omnis can
export and import files that are constructed according to all these file
types.

Tab-delimited
For regular text and numbers, this is perhaps the most
common file type of all. Fields are separated by a tab,
i.e. character no. 9 in the ASCII system. The last field
in the file format concludes with a carriage return
character, i.e. character no. 13 in ASCII. It is usually
not possible to place tabs within text fields (because
this will cause the user to skip to the next field).
However, it is theoretically possible to add tabs by
means of calculations. Omnis purges these characters
from the fields during export. If this were not the case,
these characters would be mistaken for delimiters; the
result would be incorrect separation of fields and total
confusion.

The content of the text fields is enclosed in quotation
marks (" ") if the ‘Enclose exported text in quotes’
option in the ‘Preferences’ window is checked off. Ex-
port to word processing programs usually takes place
via a tab-delimited file type.

4 Import & Export Data Input

Comma-delimited
The comma-delimited file type is similar to the tab-
delimited one, except that its fields are separated by a
comma instead of a tab.

SYLK
SYLK is a special format for spreadsheet programs. It
includes not only data but coordinates, i.e. information
concerning field placement in the spreadsheet’s
coordinate system of cells. This is how we avoid the
proliferation of delimiters. Omnis arranges the contents
of the fields in rather staid columns, with records
aligned vertically. All carriage returns and tabs are
deleted in the text fields when they are exported.

Omnis Data Transfer
The ‘ODT’ file type is designed specifically for the
exchange of data between different applications or
platforms that run Omnis. Here is where all
information concerning field type, field name, etc. is
kept. With this file type there is virtually no data or
formatting loss, hence it is the safest. Omnis Data
Exchange format is the only file type that can export
images.

Data Interchange Format (DIF)
The ‘DIF’ file type can be read by a large number of
applications. Information contained in the field content
includes: names of the programs from which the data
originates, the number of fields in the file format, the
total number of records, and the field names
themselves. The control character is replaced by a
space character.

dBase
Using this file type, dBase-compatible applications can
read the data directly. Even though dBase is a
somewhat dated programming language, there are still
many databases that use this file format.

Data Input Import & Export 5

Lotus
The file type of one of the world’s bestselling
spreadsheets for PCs has also been included; it can be
read directly by all Lotus-compatible programs.

One Field per line
All the fields are exported with a carriage return
between them, resulting in a long “ribbon” of data. No
character is inserted that would tell us when the next
record begins in the export file. The user himself must
keep track of how many fields there are in the file
format, to avoid phase displacement during import.
This is the only type of export that we have gotten the
‘Import field from file’ command to work with very
well.

6 Import & Export Data Input

Standard Export Tool

This tool becomes available when we choose ‘Export data’ from the
‘Utilities’ menu. For uncomplicated data exchanges it is more than
equal to the task. Fields can easily be retrieved by using the ‘Load
fields from file format’ menu option. The fields appear in the order
of definition, and the RSN fields for any hierarchically connected
files appear automatically.

Index
The ‘Index field’ is the field that determines the order
in which the records are sent out. Before export, the
records are sorted alphabetically by field content and
then reconstituted as the export file.

Export file
The name of the export file should be as informative as
you can make it, because export files have a way of
proliferating. Use the file format’s name (abbreviate, if
necessary), together with its file type. You may also
provide common information about small files by
placing these in the same folder and imparting the
information to the folder’s name. Windows users are
unfortunately restricted to an 8-character name + file
type labeling (extension), separated by a period.

Abbreviations
Below are some suggestions for how to abbreviate
different file types when exporting data from Omnis.

File type Abbreviation

Tab-delimited (TAB)
Comma-delimited (CMA)
SYLK.. (SYL)
Omnis Data Transfer ODT
Data Interchange Format DIF
dBase .. DBF

Data Input Import & Export 7

Lotus... WKS
One Field Per line.............................. (1PL, OPL)

The parenthetical abbreviations are my own sugges-
tions. The rest are the actual file type labels that occur
in Windows and MS-DOS. (One benefit for windows
users is that Omnis suggests the extension before
export.) Although it is conventional to let tab- and
comma-delimited file types, as well as ‘One Field Per
line,’ have the extension TXT, I don’t feel that this
serves our purpose very well. Be that as it may, we’ll
have to know the difference between them in order to
complete a successful import.

Organization
It’s not a bad idea to place export files from the same
datafile and same export time in the same folder or
directory. This will simplify the treatment of files, and
just might save an already befuddled developer from a
veritable copying nightmare.

Selection
If you wish to do a selective export, you may ask
Omnis to utilize an appropriate search. Check off
‘Select using search’ before the export. Of course, this
means you must take care to choose the right search in
the first place, before the export commences. The
records are located according to the search criteria,
sorted, and finally poured into the export file.

8 Import & Export Data Input

Export via Reports

The powerful resources we have at our disposal for presenting data
in reports can also be employed to transfer large amounts of
information to other programs. Reports provide a good opportunity
for making selections from as many files as you want, and for
exporting the fields in the exact order you want. (The fields are
exported in the same sequence as they appear in the record section:
from left to right, line by line.) Not only that, but debugging is a
breeze; all you need to do is swap destinations between file and
screen.

When you check off the ‘Print as export format’ option in the
‘Report parameters’ window, the dialog box where you select the file
type for export will appear. After file type has been selected, the
destination for the report must be sent to file (‘Report
destination’>>‘Send to file’). Then the dialog box for determining
the name of the export (actually print) file appears. This file is
retained as destination until another destination is selected. The file
itself is not released for use in other programs until another
destination or print file is selected.

Data Input Import & Export 9

Exporting to Word Processors

Since most users prefer proportional fonts when working with word
processing, the chief aim of such an export is to get exported text
separated with tabs and each line to end with ‘New line.’ You can do
this handily with standard export tools. (If the file type uses tab-
delimited text, then ‘Enclose exported text in Quotes’ should not be
checked off.) The resulting text file can be read by every word
processor.

Assembling the file manually

You obtain maximum control by assembling the ‘Print file’ yourself.
The Report destination is set to ‘File.’ This enables us to include the
column titles in a convenient way, and we can clearly see everything
that is happening. By deciding directly what will be placed in an
export file, we are in control of everything that has to do with the
file. The entire weight of the procedure language in Omnis is at our
disposal, with no information being hidden away in report formats.

Export to text file (tab-delimited) 1

Prompt for print file ;; This creates an export/print file

; Write column titles to file:
Transmit text to print file (Add newline) {#S1[chr(9)]#S2[chr(9)]#S3}

; Write values to field, separated by TAB (chr 9):
Transmit text to print file (Add newline)…
…{[con(#S1,chr(9),#S2,chr(9), #S3,chr(9))]}

; Close export file:
Close print file

Exporting to text file (1)
First we generate a print file and place the column
titles there. In this case this will be #S1, #S2 and #S3.
All text that is placed in the command ‘Transmit text
to print file’ will be taken literally and “dumped,”

10 Import & Export Data Input

unceremoniously, into the file. All field values and
calculations must therefore be set off in square
brackets ([]) so that the calculations will be per-
formed and the result inserted before the text is
dumped to disk. This is repeated for each record to be
exported (for example, within a ‘For…Next’ loop).
Finally, we close the file.

Controlling layout in other programs by using codes

If we wish to retain a layout from a report, this requires that we know
which special character codes the word processor uses for indicating
boldface style, italics, ruler settings, etc. Full-featured DTP programs
and word processors usually provide a list of these control
characters, and they vary greatly. If we know the codes for styles,
fonts, page breaks, etc., these can be inserted together with the field
values. It would be natural to use the principle as shown in Procedure
1. This opens the door to highly advanced database publishing.

Why this is rarely advisable
As a rule, this is a job for hackers, not mere mortals
such as ourselves. Inserting codes in all the right places
can be a daunting task, and can really only be justified
when exporting frequently to word processors. The
report generator in Omnis is powerful enough to meet
most needs. In a pinch, you can export raw text with
personalized letter codes at the head of each paragraph.
Later you can do an automatic search within your
desktop publishing program (or word processor) to lo-
cate the codes, add appropriate styles, and then delete
the codes themselves.

Exporting with the space character

When a report is sent to the clipboard, the data being exported
contains a number of space characters between the fields. The same
thing happens when the report is sent to a Print file. As mentioned
earlier, the resulting text is unsuitable for use with proportional fonts
in word processing, and this kind of field placement is therefore a
thing of the past.

Data Input Import & Export 11

Sequence Numbers

Sequence numbers can pose problems when data is being exchanged
between different databases. During export, the RSN is stored
unchanged; but during import, a conflict arises. Records to be added
are always assigned new sequence numbers by Omnis, otherwise
several records might wind up with the same number. This means
that the RSN fields are assigned new numbers, and this spoils things
for those who use RSNs as invoice numbers or other ‘key field’
tasks. If the user should ever have to import a hierarchically
connected file (child file), the connections will also be completely
different.

12 Import & Export Data Input

Importing Connected Files

When connected files are imported, the parent file should always go
first, so that the connection can take effect as the child file is being
imported. However, a number of requirements must be met before
the right connections can be made:

• The parent file being exported must have consecutive sequence
numbers and must be exported in its entirety. (If a record is
deleted, the RSN sequence will be broken.)

• The datafile receiving the records in the parent file must be
empty, so that RSN begins with 1.

The requirements are not met
In practice, some of these requirements will often not
be met, which is only to be expected. After all, we
rarely have datafiles in which no records whatsoever
are deleted. Moreover, the receptor datafile is rarely
ever empty. So we have to find a way to tackle this.

Principle for independent import

The developer must take care to store the old sequence numbers (of
the parent file to be imported) in a safe place together with the new
sequence numbers that will be assigned during import. The sequence
numbers can be stored in a list or in a file format connected to a
separate datafile.

Importing the child file
When the soon-to-be child records are read in one by
one from the import file, they take with them the old
sequence numbers of the parent file (i.e. old foreign
keys). This will probably not match the parent records
they are connected to after the import, because the
sequence numbers in the parent records (i.e. the key
field) were displaced when they were imported.

Data Input Import & Export 13

Locating the “true” parent record
Fortunately, we have stored the old sequence numbers
from the parent file together with the new displaced
ones, either in a separate list or in a separate file. We
need these to “clean house.” With the aid of the old
sequence number, we can locate the parent record’s
new sequence number. Then we execute a ‘Find’ (on
the parent file) with the new sequence number in order
to locate the original parent record. Then all that
remains is to update – and finally establish – a
successful connection between the correct imported
parent record and the imported child record.

Importing hierarchically connected files
with the aid of a separate file

It’s not all that easy to “catch” the point of the description in the
previous paragraph – at least, not right off the bat. So let’s go
through the entire process, as if we were following a cookbook. In
the example below, a file is used as a buffer for old and new
sequence numbers, mostly because it is so simple to search in a file.
Further, we connect this buffer to a separate, detached datafile. The
requisite procedures will be displayed as they are needed.

Fields used in the example:

fParent fChild fImportbuffer Comment

P_RSN C_RSN I_RSN Sequence
numbers
(…etc) (…etc) I_PA_RSN_OLD Old fParent RSN

I_PA_RSN_NEW New fParent RSN

I. Create a file format with its own datafile as an import buffer

Define a new file format that will retain old and new RSNs from the
parent file to be imported. In our example we will call the file
‘fImportbuffer.’ We define two Long integer fields:
I_PA_RSN_OLD and I_PA_RSN_NEW. The former should be
indexed. Subsequently we run Procedure 2. Here we create a datafile
called ‘IMPORTBUFFER.DATA,’ which is all tied down to
fImportbuffer by the ‘Set default data file’ command.

14 Import & Export Data Input

Create IMPORTBUFFER datafile 2

Local variable LO_CDATA (Character)

Calculate LO_CDATA as $cdata().$name
Create data file (Do not close other data) {IMPORTBUFFER.DATA}
Set default data file {fImportbuffer}

If len(LO_CDATA)>0
Set current data file {[LO_CDATA]}

End if

Why a separate datafile?
One of the reasons for using a separate datafile is that
it’s extremely easy to delete an entire datafile when the
import is finished. (Just chuck it in the wastebasket
(Macintosh), or select ‘Delete file’ from within the File
Manager (Windows).) We don’t have to wait for any
reorganization. However, we do have to see to it that
Current datafile has not been altered when the
procedure is finished running. We use a local variable,
LO_CDATA, to remember its name, and employ the
‘Set current data file’ command with the local variable
in square brackets at the end of the procedure.

II. Create import windows

Create an import window for each and every file to be imported. It’s
easiest to use ‘Make >> Window…’ in the ‘Design’ menu. An
import window tells Omnis what the field order is in the import file.
The window must be visible during import. The field order of visible
‘Entry fields’ in the window determines how the data will be loaded
during import. Be sure to include all the fields in the file format, in
the order in which the data was exported. In this example the
windows are called ‘vImportParent’ and ‘vImportChild.’

Note: When a window is automatically built up from a file format,
neither list field nor binary field is included! The user must add these
himself, adjusting the field order in the window afterward.

Data Input Import & Export 15

III. Import the parent file

Import the parent file with the aid of Procedure 3, shown below.
Here we copy the old sequence number (PA_RSN) over to
I_PA_RSN_OLD before the record is added to the parent file. When
the parent file has been updated, we’ll then know the new sequence
number and can copy the content in P_RSN over to
I_PA_RSN_NEW. Finally, the content of fImportbuffer
(I_PA_RSN_OLD and I_PA_RSN_NEW) is saved with the aid of
the ‘Insert with Current values’ command. This is repeated until
‘Import data’ yields ‘flag false,’ and the loop is completed. In this
example, we utilize ‘Omnis data transfer’ as a file type, but there is
nothing wrong with using another file type.

Import parent file 3

Begin reversible block
Open window vImportParent

End reversible block ;; As the procedure ends, the window closes.

Prompt for import file
If flag false

Quit procedure
End If

Prepare for import from file {Omnis data transfer}
If flag false

OK message {Wrong format in Import file. Please use an ODT file.}
Quit procedure

End If

Repeat
Set main file {fParent}
Prepare for insert
Import data ;; A record is loaded from Import file to CRB.

If flag false
Cancel prepare for update

Else
Calculate I_PA_RSN_OLD as P_RSN ;; Remember old P_RSN
Update files ;; Update fParent, new P_RSN is generated
Calculate I_PA_RSN_NEW as P_RSN ;; Remember new P_RSN

Set main file {fImportbuffer}
Set read/write files {fImportbuffer}
Prepare for Insert with current values

16 Import & Export Data Input

Update files ;; Save RSN’s in fImportbuffer
Set read only files {fImportbuffer}

End If
Until flag false

End import
Close import file

Technical comments
The updating of fImportbuffer is a bit special. To keep
‘Update files’ from updating both files, fImportbuffer
is kept in Read Only until it’s time for a new record to
be added. The simultaneous updating becomes a
problem from the second time the loop is run, because
by then I_PA_RSN_OLD will have received a new
value when the loop encounters the first ‘Update files’
(shown in boldface type inside the loop in Procedure
3).

Since fParent is kept in Read/Write mode the whole
time, both files are updated at the next ‘Update files’
command. For fParent, however, this doesn’t matter,
because none of the fields in fParent have changed
content from the first to the second ‘Update files’
command. (Naturally, we could have treated fParent
just as we do fImportbuffer with respect to Read Only
or Read/Write status, but this isn’t strictly necessary.)

IV. Import the child file

When the records in the parent file have been imported and the
relationship (fImportbuffer) has been established between the old
and the new P_RSN, the child file may be imported. As the records
are loaded, the child file’s copy of P_RSN (i.e. the foreign key)
follows. But now that the parent records have new sequence
numbers, we have to turn to fImportbuffer to find out what has
become of them. With the aid of I_PA_RSN_NEW, we find the
correct parent record in fParent once again, and the right connection
between child record and parent record can be established under
‘Update files.’ This is illustrated in Procedure 4.

Data Input Import & Export 17

Import child file 4

Begin reversible block
Open window vImportChild

End reversible block

Prompt for import file
If flag false

Quit procedure
End If

Prepare for import from file {Omnis data transfer}
Set main file {fChild}

Repeat
Prepare for insert
Import data
Redraw windows (All windows) ;; Displays the imported data.
If flag false

Cancel prepare for update
Else

Single file find on I_PA_RSN_OLD {P_RSN} ;; Locates P_RSN in
Single file find on P_RSN {I_PA_RSN_NEW} ;; Retrieves the

parent record itself, using
I_PA_RSN_NEW.

Update files
End If

Until flag false

End import
Close import file

V. “Clean up”

When the child file has been imported and the correct parent records
have been successfully linked, the datafile IMPORTBUFFER.DATA
may be deleted. However, this is not a “must.” When the datafile was
generated in Procedure 3, it wound up in the same directory or folder
as the Omnis 7 program. There was nothing to keep us from placing
it elsewhere, but this would have meant designating a correct path in
the ‘Create datafile’ command. In fact, the difference is only
cosmetic. It doesn’t really matter whether the end-user deletes the
file or not. If a datafile with the same name and same directory or
folder already exists when a new one is created, the old one will
simply be deleted. If you’re a bit of a perfectionist, however, you

18 Import & Export Data Input

may run Procedure 5, which makes use of Omnis extension
‘DeleteFile.’

Delete IMPORTBUFFER.DATA datafile 5

DeleteFile ("IMPORTBUFFER.DATA") with return value #1
If #1<>0

OK message {The file was not deleted}
End If

Deleting the datafile IMPORTBUFFER.DATA (5)
When using the external routine ‘DeleteFile,’ it is
absolutely essential that the correct path and the
correct file name be set, otherwise the wrong file could
be deleted. In Procedure 4 we used the same directory
as the Omnis program, i.e. we didn’t specify any
particular path, sparing ourselves the effort. There is
no overriding reason why we should tuck it away in a
folder, because it is deleted in Procedure 5 anyway.
During import, the end-user is spared from having to
see an extra file here – if he’s the type that can’t be
swayed from doing other things with the computer
while it is doing an import. He still won’t be able to
delete the file, because it will be “busy.”

Data Input Import & Export 19

Importing hierarchically connected files with the help of
a list

If we want to avoid having to reorganize a datafile or avoid manipu-
lating datafiles, a list in the internal memory is the way to go. Since
the list is not stored on disk, we don’t have to work with the hard
disk. However, the disadvantages of this approach are painfully
apparent when the power fails or your system crashes. Instead of
searching in a file, we use ‘Search list’ (or possibly a binary search).
See the chapter entitled “Lists and Tables.”

How to avoid the problem altogether

The preventive solution to the problem is to utilize a relational join
instead of a hierarchical connection. All the connections will remain
intact after the import, since they are not dependent on the RSN. All
files that are connected using relational joins can be imported freely,
and it doesn’t matter which one is imported first.

Finding a valid key field
If the parent file contains another field that is unique,
this field can be used to restore the link. The value of
the parent key field (or the concatenated contents of
several) can be stored in one of the fields of the child
file, which gives us a connection as good as any.

20 Import & Export Data Input

The ‘Import Field From File’ and ‘Import Data’
commands

Both ‘Import data’ and ‘Import field from file’ can lead to confusion.
Let us take a closer look at them.

Import data

The ‘Import data’ command utilizes the fields placed in visible Entry
fields in the forward-most window as a blueprint for how to interpret
the stream of data flowing in during import. The order of the fields in
the window determines how the data is distributed among the
different fields in the CRB. Extraneous fields will be disregarded or
set to Empty, depending on whether you have specified too few or
two many fields in the window. (Omnis sees to it that the “framing”
in the file is correct.)

The command only transfers the values from the import file to the
CRB. (This can be compared with the process by which the user
enters data.) Consequently, the developer himself must keep tabs on
‘Prepare for insert’ and ‘Update files.’ (But that’s not all that hard, is
it?)

Concerning window formats generated automatically
Windows that are created automatically with ‘Make»
Window…’ are particularly apt as import windows.
But before they can be used, a couple of modifications
need to be made:

• Only Entry fields and Picture fields are taken into
consideration by Omnis.

• Boolean fields appear as Check boxes, which will
have to be changed to Entry fields.

• The field representing the RSN appears in a
Display field. To avoid “field displacement,” the
field that shows the sequence number must be
changed from Display field to Entry field.

Data Input Import & Export 21

• The order is usually correct at the outset, and
Omnis only looks for Entry fields and Picture
Fields. It doesn’t matter if there are other kinds of
fields (e.g. Pushbuttons) between Entry fields,
because they will be disregarded anyway. In fact,
you can just as well forget about Pushbuttons when
you create the import window.

• It’s a good idea to delete the Window Control
Procedure for this window. Even though the control
procedure is relatively benign in such windows,
this will be one less thing to think about when
debugging. In any case, you won’t be needing it
here.

Import field from file

This command takes one “line” – raw and untreated – and places it in
the designated field. A line for this command is not restricted by
character 13 (carriage return), as is the case with tab-delimited file
types. This means that virtually every kind of character in the file can
be loaded, including formatting characters and index characters.
While this command may not be all that useful for most developers,
it could prove invaluable for the most advanced ones. For example, it
can be used to locate a specific point in the file from which to start
the import. A related command, ‘Import field from port,’ can be used
to monitor a port so that a specific value triggers an import or
another procedure.

If we have an import file of the type ‘One Field per line,’ we can use
‘Import field from file.’ But then we must know how many fields
there are in the file format, otherwise we get a phase shift, and the
imported data is corrupted. The advantage of the ‘Import field from
file’ command is that it contains the ‘Leave in buffer’ option. If this
option is activated, the import values will be retained in the import
buffer. When we’ve made sure that the imported record doesn’t
already exist in the datafile and are ready to insert it into the CRB,
we can retrieve it directly from the internal import buffer once again.
We do this by running the ‘Import field from file’ command once
more, this time without activating ‘Leave in buffer.’ This technique
keeps us from having to create our own buffer.

22 Import & Export Data Input

Update or Insert New Record?

Import is appropriate when we wish to gather information from
several different datafiles and combine them into one big datafile.
There is often a need for this – for example, in major investigations
involving data entered in various offices at separate geographical
locations. With repeated import (especially of connected files), we
often find that the same records keep turning up. We don’t want to
place these in the datafile as new records. Unfortunately, the
commands we will be using to mitigate this (e.g. ‘Find’), can all too
easily delete what we import from memory. How do we get around
this?

See if the record exists

After obtaining the data with the help of ‘Import data,’ we run a
search on the file with an indexed field for which the content should
be unique. With certain reservations, this could be the name of a
customer, for example. If the search is unsuccessful, this tells us that
the record does not exist; consequently it can be inserted as new. The
CRB for ‘Main file,’ however, will have been deleted, because the
search was unsuccessful. (The content of the import buffer is also
emptied when we use the ‘Import data’ command)

A successful search

If the search is successful, we are suddenly left with the record from
our own datafile, and the imported values have vanished from the
CRB. If we try to retrieve the import values anew, the next “record
frame” in the import file appears. In multi-user mode we run into
further trouble: When we use the ‘Prepare for edit’ command, Omnis
reloads the record from the datafile, which means that what we are
trying to import disappears. To avoid all this, we use a list as a buffer
before the search is run.

Data Input Import & Export 23

Update or add record?

If the datafile already contains a record like the one to be imported,
the user may want to consider whether to update the record or insert
it as a new one. Records that otherwise seem identical might actually
represent different objects in real life (e.g. lots of people sharing the
same name). The user should be provided with all available
information so that he can make an intelligent decision as to the true
identity of the imported record.

Is the identification good enough?
If the sample material contains lots of seemingly
identical records, the fault might lie with the
identification scheme. In all good investigations, the
identification of objects is reliable, which means we
avoid the above-mentioned problem. If the indexation
is truly to be trusted, we don’t need to burden the user
with the task of determining the true identity of the
record to be imported.

Import: Insert or edit? 6

Set current list #L1
Define list {fPersons} ;; All the fields in the file format
Add line to list ;; Replace line in list requires at least one line
in the list to work properly.

Prompt for import file
Set main file {fPersons}
Open window iwPersons ;; Import window
Prepare for import from file {Omnis data transfer}

Repeat
Import data
If flag false ;; No more records to be imported.

Cancel prepare for update
Break to end of loop

End If
Redraw windows

Replace line in list {1} ;; Field values of fPersons are stored in the
list.

Find on P_Name_DateBirth (Exact match) ;; Must be indexed and

24 Import & Export Data Input

unique.
If flag false ;; Record does not exist in datafile.

Prepare for insert
Load from list {1} ;; Restore imported data from list.
Update files

Else ;; Record probably exists in datafile.
Yes/No message {Update record [P_Name_DateBirth], address
If flag true

Prepare for edit
Else

Prepare for insert ;; Insert as new record.
End If
Load from list {1}
Update files

End If
Until break

End import
Close import file
Close top window ;; Close import window.

The procedure “Import: Insert or Edit?” (6)
In this procedure, the file fPersons is used; the key
field (P_Name_DateBirth) is composed of the person’s
name and birthdate. Thus we can be reasonably sure
that the field is truly identifying. (Remember that the
records must in some way be identified on the basis of
the values in the import file.)

To find out whether the record already exists or not,
we do a search with the imported value of the key
field. If the search is unsuccessful, a ‘Prepare for
insert’ command is executed, after which the import
values are retrieved from the list. If the search is
successful, this means that the record is to be updated.
We execute a ‘Prepare for edit’ command and read in
values from the list accordingly.

To save or not to save?

In doubtful cases, the decision is the end-user’s, on the basis of the
values in the remaining fields that are imported. In Procedure 6 we
use a ‘Yes/No message.’ No matter what the user chooses, the

Data Input Import & Export 25

imported record will be saved some way or another, either as a new
record or as an updated version of an old one. Those who preffer the
option of not saving the imported record at all must have a separate
window showing both the imported record and the record to be
updated, and providing Pushbuttons such as ‘Insert new,’ ‘Update
existing,’ and ‘Do not store.’ In any case, such a window would offer
a lot more than our feeble, puny Yes/No message box.

qCHhcq
Import and Export are the freeway into and out

of your application.

qCcq

Section 6: Data Output

Search & Find

Introduction.. 2
Searching Within a Single File.. 4

Locating a specific record
The relationship between indexes
Find tables
Find
Next
Unsuccessful searches

Searching in Connected Files .. 19
Key fields and foreign keys
Hierarchical connections and relational joins
Find parent record
Find connected records
One–to–One
Many–to–One
Many–to–Many

Searches Spanning Several Generations.. 37
Find Grandparent
Find grandchild

Search Formats.. 44
Prompt for search format
Flexible search formats
Search formats versus ‘Set search as calculation’
Creating search formats with notation

Speed Tests .. 53
The test method
Simple searches on an identified record
Field larger than a certain value
Two fields, each with their respective values
Conclusion

2 Search & Find Data Output

Introduction

Searching, a sensitive subject, is the most important thing that a
database can do. Being able to locate specific input is the main
reason for taking the bother involved in keying in large quantities of
text and numbers. Had that not been the case, it would have been
simpler to store all the data on reams of index cards and file them
away in a card catalogue. Good search tools separate good
applications from poor ones. Not only do they provide the basis for
analysis and presentation, they are the single most effective means of
“breathing life” into a mass of data – that is, making it flexible,
available, and dynamic.

Don’t panic!
The annoyingly prominent status of searches is at odds
with the sad fact that they aren’t always that easy to
execute. You are quickly drawn into general database
theory, where you are required to think abstractly on
many levels. It’s easy to be intimidated by a
complicated file structure, especially if you’re trying to
understand how all the components of the system work
together at the same time. Fortunately, you don’t have
to. We have only to look at a couple of file formats at a
time and ignore the others. We’re also going to try to
learn something about indexes and how to use them.
Getting to know the separate parts well should put you
fully in control. You’ll gain a better understanding of
the whole process as you gradually become used to the
different forms of file connections.

qCHhcq
If there’s one thing I’m sure about, it’s that I’m sure that

I’m unsure
whether I’m in doubt about whether I’m sure.

— And that’s for sure!

qCcq

Data Output Search & Find 3

The mysteries of speed
Quick searches are something we all strive for. Some
even try to become experts in this area. When
databases are compared, it’s search speeds that are
measured, just as horsepower and optimal velocity are
standards of measurement where sports cars are
concerned. Persistent developers sometimes use
unorthodox methods in their quest for rapid searches.
This often results, however, in procedures with
mysterious contents that are difficult to decipher.
These procedures are usually spun around the
paradoxical effects of various bugs and eccentricities
in Omnis’ native code. I’ve decided not to attempt to
follow these nitpickers. The goal of this chapter is to
ensure steady progress based on simple principles. The
conventional procedures are more than sufficient in
everyday life.

SQL and Omnis 7 v.3.0
In line with current trends, Blyth is moving towards
client/server solutions for Omnis 7. It is becoming
increasingly common to use SQL as the main language
and to have a smaller machine connected to a large
one, which can run the most powerful database
engines. This is what is known as “frontend” and
“backend.” To guide developers in this direction, Blyth
has used SQL expressions for virtually every type of
data access in the v3.0 manuals. The description of
Omnis’ own database engine has been relegated to a
tiny appendix. I hope that this chapter will prove useful
to those who still wish to use ‘Find tables’ and
‘Next/Previous.’

Combination SQL and Find tables
Even in larger configurations, there are always a
number of small files that might as well be saved
locally on the frontend machine. Here Omnis’ own
database engine could be used to access the data. You
can compare the two engines with a train (SQL) and a
car (Omnis’ core code), respectively. The car is large
enough and handy enough to use for short trips to the
store, but you need a train to transport large quantities

4 Search & Find Data Output

of goods (data). A good developer should how to
choose the mode of transportation that is most
appropriate.

Data Output Search & Find 5

Searching Within a Single File

Locating a specific record

You will often need to find a single, specific record in a file. To do
this, you need to know a field value that is unique for this record. If
the file is an address list, you can try the person’s name. But because
of the commonness of certain names, this is not a sure-fire method. If
you decide to use the name, include the birthdate if you want to be
fairly sure of finding the right record. The search will then compare
the name field (as well as the birthdate) with a certain value. These
two constitute a search with a complex comparison, which shouldn’t
be necessary when all you want is to find the record you have in
mind. We’ll take a closer look at complex searches later on. Right
now, you want to carry out a simple search, which means you need a
unique, identifying piece of information.

ID (Social Security) numbers
If we had all had completely different names, we
wouldn’t need identification (or Social Security)
numbers. However, the world isn’t that simple, which
means (in most European countries, at least) that
everyone is assigned a number at birth. Most people
are - justifiably - unwilling to give out their number,
knowing full well the potential for abuse. This is why
it is mostly banking, welfare and health institutions
that can count on receiving this information. Even they
have problems obtaining ID numbers, either because
people forget it, or because they are unwilling to give it
out.

Personal ID numbers
This difficulty with ID numbers means that all kinds of
clubs, organizations and businesses often create their
own ID number codes. As long as the numbers are
mainly for internal use, this is no problem. However,
making the client, member, etc. remember his or her
membership number in order to be recognized by the
database is an example of bad programming on the
developer’s part. In principle, such numbers should

6 Search & Find Data Output

only be used to make simple searches as quick as
possible in the different procedures of the application.
Ordinary customers should be identified with
information that the customer remembers at the
moment in question and which they are not afraid to
give out. Examples of this type of non-sensitive
information are the customer’s name and perhaps their
address or telephone number (instead of their
birthdate).

RSN unique codes
The developer can choose to set up his or her own
unique numbers or codes, or use Omnis’ built-in
system: Record Sequence Number. The latter doesn’t
require any extra programming and is easy to use.
Furthermore, you can create your own code based on
the information available. For example, you can add an
‘M’ if the person is male and ‘F’ if the person is
female. Codes with numbers and letters can thus
contain more information than mere numbers. In
addition, codes are easier to remember than numbers
(if remembering numbers should ever be necessary).
Naturally, the meaning of each letter in the codes must
be jotted down somewhere in case you forget them.

Locating a record
When you actually know which item of information
you wish to find, it is a simple matter to search the file
in question. For every successful search, one or more
conditions are invoked which must be satisfied. We
call this set of conditions our “search criteria.” Simple
searches have only one search criterion, i.e. they only
look at one field. This criterion may be ‘C_RSN=12’,
for example. Provided that this field is uniquely
indexed, we don’t need any other information to locate
this specific record. If we only want to look at the
values from one file, we use the following command:

Single file find on C_RSN {12} (Proocedure line 1)

Here, the Record Sequence Number value in the record
we’re looking for is 12. The field representing the RSN

Data Output Search & Find 7

is called C_RSN. ‘Single file find’ runs a search in the
file format (to which the field belongs) and only reads
in data from this file. This makes the command
independent of Main file, which can then be used
without any further ado.

Single file find on C_RSN (Proc.l. 2)

When no comparison value has been entered in the
command, Omnis use the current value of the field
being searched. This can be seen in Proc.l. 2 (“Proc.l.”
is the abbreviation for “Procedure line”). Unless we
know that the C_RSN field contains the right number,
this is a handy way to begin a search.

Single file find on C_RSN (Exact match) (Proc.l. 3)

‘Exact match’ signifies that the search should fail
unless a record is found that proves to be an exact
match. Proc.l. 3 shows an ‘Exact match’ search.
Provided this option is not selected, the search will
accept similar records if the one we wanted doesn’t
exist. This is why we should select ‘Exact match’
whenever we wish to find a specific record, or we may
risk continuing the procedure with a record that is not
the one we want.

Find on C_RSN (Exact match) (Proc.l. 4)

‘Find’ works the same way as ‘Single file find.’ It
automatically calls up every connected parent record
(one in every connected file) as soon as it has found
the appropriate child record. This applies to every file
linked by means of hierarchical file connections, i.e.
standard Omnis file connections.

The relationship between indexes

In a file format, we usually set up an index for every field we might
want to use in a search or a sort. An index shows the order of the
records in the file when they have been sorted alphabetically
(alphanumerically) according to the field in question. (Read the
chapter entitled “Data Structure in Memory and on Disk” for more

8 Search & Find Data Output

information on indexes.) Among other things, indexes are used by
such commands as ‘Find,’ ‘Next’ and ‘Previous.’ Let’s take a look at
a file format and see how these commands work here.

Find on RSN_FELT (Exact match) (Proc.l. 5)

Fig. 1 “The pointer” has found a record.

Figure 1 shows us what the ‘Find’ command in Proc.l.
5 does. We have called the field that contains the
Record Sequence Number RSN_FIELD. The value of
RSN_FIELD is used as a basis of comparison, and the
corresponding record is read into the CRB.

The pointer
‘Find’ always starts the search from the beginning of
the file. Let’s imagine that when a record is found, a
pointer moves to this record and forms the starting-
point for the direction of subsequent ‘Next’ or
‘Previous’ commands. The pointer knows which index
it looks through on its way down, but this direction can
be easily changed later. This is a simple search through
a specific index. We can see that the records are
arranged neatly and orderly. Once a record has been
found, we can continue up or down the same index
(Fig. 2) with the aid of ‘Next’ or ‘Previous.’ This
moves us one record at a time.

Data Output Search & Find 9

Fig. 2 We can move up and down the index.

Several indexes
On closer inspection, we see that this file contains
several indexes, each crossing the other. The record we
found has indexes in many directions, as shown in
Figure 3.

DATE_BIRTH

Fig. 3 Indexes that stretch in every direction

10 Search & Find Data Output

Changing indexes
The record is placed in each index, depending on
where the field value of the corresponding fields
appears in the alphabet. Thus a record can be in front
of one index and in back of another, depending on the
contents of the the records’ fields. If we want to
“change tracks,” as it were, we can use ‘Next’ or
‘Previous’ along with the name of another index. (The
name of the index is usually the name of the related
field.) Thus we end up with the next record appearing
in the alphabetical order of this other field.

Fig. 4 Take your pick!

Indexes show the way
As Figure 4 shows, there are indexes in every direction
starting from the record we found. This leaves us free
to choose the direction we wish to move in.

Previous on SURNAME (Proc.l. 6)

Data Output Search & Find 11

Fig. 5 Taking one step back in the SURNAME index

When the command in Proc.l. 6 is carried out, we are
taking one step back along the index SURNAME, as
shown in Fig. 5. If the field value of the first record is
‘Smith,’ then this (previous) record’s value must be
nearer the front of the alphabet and its SURNAME
field may contain the name ‘Sadowy.’ Starting from
this new record, indexes extend in every direction,
according to the contents of the fields in the other
records.

Find tables

A ‘Find table’ is a set of records that matches the search criteria of a
specific search. Typically, it is set up after a ‘Find’; and with the aid
of ‘Next,’ we go through the table one record at a time.

Find table

Fig. 6 A ‘Find table’

12 Search & Find Data Output

A “constrained” Find table
When we use a search format or a search calculation,
we usually get a limited selection of records
somewhere in the middle of the file, as shown in Fig.
6. The example in Procedure 1 uses ‘Set search as
calculation.’ Here, only animal names that start with
“G” will be included in the Find table (which is
generated with ‘Find.’) The subsequent ‘Next’
command only follows the Find table that had
previously been generated. In this procedure, whenever
there is a turn in the procedural loop, the record that
has been read in is added to the #L1 list. When ‘Next’
passes the end of the Find table, the result is ‘flag
false.’

Find table to list 1

Set current list #L1
Define list {fAnimal}

Set search as calculation {mid(AnimalName1,1)=“G”}
Find on AnimalName (Use search)
Repeat

Add line to list
Next on AnimaName (Use search)

Until flag false

Line no. Animal name
1 Goat
2 Gorilla
3 Pig

The contents of #L1 (after Procedure 1 has been run)
are shown in the table below the procedure (previous
page). This isn’t an especially speedy example, but it
does show how Find tables works. Using Find tables
often results in quicker procedures than using ‘Build
list from file.’

Data Output Search & Find 13

A Find table in every Main file
Every Main file can have its own Find table. You
change the Find table by switching Main file and use
the right indexes in the ‘Next’ commands. Procedure 2
shows you how to do this.

Changing files and Find tables 2

Set main file {fPlants}
Find on PlantName {"Horseshoe"} ;; PlantName="Horseshoe"

Set main file {fAnimal}
Find on AnimalName {"Goat"} ;; AnimalName="Goat"
Next on AnimalName ;; AnimalName="Gorilla"

Set main file {fPlants}
Next on PlantName ;; PlantName="Hibiscus"

Changing files and Find tables 1
The fPlants and fAnimals files are independent of each
other. Having found a record in fAnimals, we can go
back to fPlants and continue moving on from our
previous position. We see that ‘Hibiscus’ comes after
‘Hazel’ in the alphabet, so everything should be just
fine.

Find

‘Find’ starts at the beginning of the specified index and quickly finds
the first record in the index order which meets the search criteria.
This record is read from disk into the Current Record Buffer. If there
are several similar records containing the same value, ‘Find’ will
usually call up the first record in the lineup, i.e. the one with the
lowest RSN.

Non-discriminatory searches

When we set a single search criterion, we choose an indexed field
and a field value that matches the record we wish to find. ‘Find’
looks for the record that best fills these criteria. For text fields, this
means that as many letters as possible (starting from the left) in the
text of the search criteria should match the text in the record we’re

14 Search & Find Data Output

looking for. The first letter takes precedence over the second one,
which in turn takes precedence over the third one, etc. The same
rules apply when we do a sort.

The number “0” and the letter “O”
To make it easier to work with data of varying quality,
Omnis has purposely been programmed to distinguish
between the number “zero” and the letter O. If the
original data has been entered according to some out-
of-date system, or by an inexperienced user, the letter
“O” may have been used to represent the number
“zero.” In most text-based systems, the number “0”
appears with a diagonal line and thus strongly
resembles the Norwegian letter “Ø”. The intention is to
distinguish between the number “0” and the letter “O”.
Some inexperienced users do, in fact, mistake the zero
with a slash through it for the letter “Ø” and are
therefore reluctant to use it.

This problem dates back to the time when typewriters
reigned supreme. Since the number “0” and the letter
“O” look so much alike, many old typewriters didn’t
even have a separate character for “zero.” Those who
grew accustomed to the lack of this character (as well
as those who think that the “Ø”-zero character is the
letter “Ø”) might very well use the letter “O” instead.
This could prove to be more than the minor annoyance
it would appear to be at first glance. You basically get
the same result you would get if you were using a low
quality database: undependable results when searching.

What it all boils down to is that uppercase “O” and
lowercase “o” in the data file can be interpreted both as
numbers and letters when files are being searched. If
the text you are searching for contains the number “0,”
the Find table will include records in which the letter
“O” is supposed to mean “zero.” However, if the
record in the data file contains the number “0,” it is
interpreted as a zero, and nothing else.

Data Output Search & Find 15

Number values
As for number fields, the first record chosen is the one
that has a value equal to or greater than that of the
search criterion. When there is no exact match, Omnis
will pick the record that’s next in line (in the index,
that is). If, for example, the search criterion uses the
value 97, 101 will be chosen instead of 96, since 101
has a higher numerical value. The fact that 96 is closer
to 97 has no bearing on the matter here.

Simple searches
If the only search criterion is a simple comparison, and
‘Exact match’ has not been selected, this is more like
pointing at a record in the file than making a limited
selection.

Find on AnimalName{"Goat"} (Proc.l. 7)

No “constrained” Find table is generated here. ‘Next’
will start from ‘Goat’ and continue to scroll through
the file until it reaches the end of the index.

Discriminatory searches (‘Exact match’)

If we select ‘Exact match,’ this means that the field’s value should
match the contents of the search criteria and nothing else. The
number of letters should match, as well as the use of upper and
lowercase letters. If a letter “O” has crept in where there should be a
zero, the record will not be accepted.

Find on AnimalNames {"Goat"} (Exact match) (Proc.l.. 8)

If, as shown in Proc.l. 8, ‘Find’ is used, any subsequent
‘Next’ will scroll only through those records where
AnimalNames equals ‘Goat.’ This gives us a short
Find table.

Advantages
Since ‘Exact match’ searches don’t accept many
exceptions or extra conditions, they can search large
files somewhat more rapidly.

16 Search & Find Data Output

Single letters
If we only give the first letters, ‘Find’ will locate the
first record (in the index sequence) containing these
letters. In this case we will only use one letter:

Find on AnimalNames {"M"} (Proc.l. 9)

The cursor starts at the first record beginning with ‘M,’
e.g. “Monkey.” Since there are no other search
conditions, the search will only indicate where the
cursor should begin. Each ensuing ‘Next’ will then
gradually work its way through the entire file, starting
at the first record beginning with ‘M.’

If we had selected ‘Exact match,’ the search criterion
would have dictated that AnimalNames should be ‘M,’
neither more nor less. But since there is no animal by
that name, the search would fail. What we usually need
in such cases is a search format that gives
AnimalNames beginning with ‘M’ as a condition.

Find on AnimalNames (Proc.l. 10)

If no specific point of comparison is given, the search
will use the field value in, say, AnimalNames to start
the search, as shown in Proc.l. 10.

TIP: Make sure that you know the difference between text sorting
and numerical sorting, especially where numbers are
concerned. For the numbers 1 to 10, the sort will look like
this:

Numerical sorting: 1,2,3,4,5,6,7,8,9,10
Text sorting: 1,10,2,3,4,5,6,7,8,9

During text sorting, the number 10 will come between 1 and
2, because this type of sort looks at one digit (i.e. one
character) at a time. Values with the lowest character come
first, followed by all the other numbers that begin with the
same digit. Both 100 and 1000 would be placed between 10
and 2.

Data Output Search & Find 17

The solution is to place enough zeros in front of the numbers
that don’t have the maximum number of digits within the data
file, like this:

Text sorting: 01,02,03,04,05,06,07,08,09,10
001,002,050,070,071,100

Next

This command works in much the same way as ‘Find.’ The
difference is that it always starts where ‘Find’ left off. It follows the
Find table that was generated last, using the search criteria that were
given then. ‘Next’ can narrow the search by using ‘Exact match’ or
‘Use search’ where the original ‘Find’ didn’t. However, we cannot
broaden the search this way. A ‘Next’ command which is less
complex (i.e. which has fewer options selected than the original
‘Find’ command) will follow the same pattern that has been
established. In other words, it will use the Find Table that has been
generated.

‘Next’ can also change direction, i.e. decide to continue along the
index of another field. This will lead to a new Find Table being
generated in this direction, the size of which will be determined by
the search criteria that were given with this particular ‘Next’
command (‘Exact match’ or ‘Use search’).

Unsuccessful searches

When the conditions for a search using “Find” are too rigid for the
data contained in the file, the search will fail. This means that the
fields in the Main file and in all hierarchically connected files will be
deleted from memory; in addition, the flag will be “false.” The Main
file’s Find Table will also be gone. If the value we wanted to find
only existed within the field we searched, we’ll have to retrieve it
from somewhere else, such as a variable or a list, because the field is
now empty.

18 Search & Find Data Output

Find on AnimalNames(Exact match) ;;
AnimalNames=“Bull” (Proc.l.11)

Immediate effects
If the search in Proc.l. 11 fails, the value of the field
AnimalNames will be deleted. Let’s imagine that in
Proc.l. 11 the file doesn’t contain a record with an
AnimalName that matches “Bull.” If we try to repeat
the command without adding any other information,
this will amount to carrying out a search without any
search criteria. The value we want Omnis to find is
#NULL, which is always at the very front of the index.
In this case, the first record in the AnimalNames index
is called up, giving the same result as with ‘Find first
on AnimalNames.’

Find tables
The same thing happens when ‘Next’ or ‘Previous’
have strayed outside the bounds of Find table. The
field values in the Main file and connected files are
deleted from memory. It will not be possible to “sneak
back into” Find table again with ‘Next’ or ‘Previous,’
because essentially what we have here is a failed
search. Both Find table and the field value that are
being used in the search are lost, the latter being a
prerequisite for rebuilding Find table with the aid of
‘Find’ or ‘Next.’ This is one of the reasons why lists
are often handier than Find tables for carrying out
complex search operations.

Find tables and search formats
Failed searches won’t lead to this problem if we use
search formats or ‘Set search as calculation.’ This will
have the effect of putting the value we plan to use for
comparison in a safe place, whether the fields in Main
file are deleted or not. If we use ‘Next,’ with ‘Use
search’ selected, the first ‘Next’ that fails will result in
blank fields in the Main file. The following ‘Next’ will
use comparison values in the search format (or
calculation) to generate a new Find table, after which it

Data Output Search & Find 19

will find the first record here. ‘Next’ will appear to
have abruptly halted (blank fields), and then restart at
the beginning of Find table.

Connected files
Failed searches delete the fields in both the Main file
and all hierarchically connected files. This can all too
easily be overlooked in complex procedures and may
thus lead to numerous inexplicable failures. As long as
you bear this point in mind, it should be relatively easy
to eliminate or avoid such errors.

20 Search & Find Data Output

Searching in Connected Files

When we work with files that are linked, everything appears to work
fine until we begin searching for data. Searching in connected files
may seem problematic, but the only thing we really need is to know
how to search for single files. Omnis itself takes care of some of the
hierarchical searches automatically, whereas with relational joins we
have to do everything ourselves. The searches always take place one
at a time, one file at a time. You only need to know the order they’re
in and the information you need to carry out each search.

Key fields and foreign keys

When considering file connections, a couple of concepts will help us
describe how the fields are linked. We have already explained how a
file always has a field that can identify the different records. In other
words, this means that none of these records ever have identical
values in this field. This identifying field is essential, which is why it
is called the “key field.” (It isn’t very helpful to think in terms of
keys and locks and the like; in fact, it will only confuse the issue.)

File B

File A

Foreign key field

Key field

Fig. 7 Key field and foreign key field

Among other things, Fig. 7 shows that file B is connected to file A.
The field (in file B) which enables every record in file B to
remember which record they are connected to in file A is called a
“foreign key field.” This field (also known as the “foreign key”) is
thus a foreign file’s characteristic “fingerprint,” which can be used to
call up the foreign record that made the imprint – i.e. the one to

Data Output Search & Find 21

which the child record is linked. More on this later. For now, it’s
enough to remember that the key field is the identifying field of the
record, whereas the foreign key is a foreign record’s “fingerprint.”

Hierarchical connections and relational joins

For a quick recap of the different types of links between file formats,
refer to the chapter entitled “File Connections.” Fig. 8 shows the
underlying principle behind ‘Many–to–One’ connections. The
developer uses relational joins to generate the connections between
the various records in the file formats and decides himself when the
connected records should be read in. In all the subsequent examples,
RSN is the identifying field for the different file formats. In the
“relational join” examples, we assume that the value of RSN has
been copied from the parent record into the foreign key fields in the
child record. Hierarchical file connections are based on an internal
“copying” and managing of the RSN, so most of the locating of the
parent records is done automatically.

Fig. 8 File connections – a brief recap

22 Search & Find Data Output

Find parent record

Each child record has only one parent record in each connected file.
When we have located a child record, connected records are usually
read in automatically immediately thereafter. However, there are
situations where this doesn’t happen; in such cases we will want to
read in the parent records ourselves.

Hierarchical
With a ‘Single file find,’ Omnis looks up only the file
in question, even when connected file formats exist.
Let’s imagine a simple search with the Record
Sequence Number of the file fPersons:

Single file find on P_RSN (Exact match) {67} (Proc 12)

RSN number 67 was chosen at random, merely as an
example. When it comes time to find records that are
higher up in the hierarchy, the next command will be:

Load connected records (fPersons) (Proc.l. 13)

In other words, we specify the name of the child file in
Proc.l. 13. This file “reaches up” into the file structure
and locates its parent record in all of its connected
parent files.

Relational
When a given record has another record linked to it
through relational joins, this tells us that one of the
fields contains information capable of identifying the
specific record it’s connected to. In other words, this
information is the foreign key. For the sake of
simplicity, we can use ‘Single file find’ for every file
to which the child file is connected. In Proc.l. 14, the
parent file’s key field is called P_RSN.

Single file find on P_RSN (Exact match) {C_FOREIGNKEY} (Proc 14)

When Proc.l. 14 has been carried out, the parent record
will reside in memory.

Data Output Search & Find 23

Let’s imagine a situation in which a person (fPerson) is
connected to a company (fCompany) and to a specific
customer category (fCategory), and that all these are
stored in their respective files. In fPerson (the child
file) there is one foreign key field for each of the two
parent files, thus satisfying the conditions for a
relational join. We have called the foreign keys
P_CompanyKey and P_CatKey respectively, and they
can be used as follows:

Single file find on CO_RSN (Exact match)
{P_CompanyKey}
Single file find on CA_RSN (Exact match) {P_CatKey} (Proc.l. 15)

CO_RSN and CA_RSN are key fields in the
fCompany and fCategory, respectively. After Proc.l.
15 is finished, all connected records will have been
read into the CRB.

Enable relational finds
If we wish to build up a table containing relationally
joined records in two different file formats, we can do
this automatically. First we set up a search format (or
search calculation) that shows which fields are to have
the same value. In other words, we set the key field in
one of the file formats to be equal to the corresponding
foreign key field in the other file format. (It’s possible
to narrow the table down even further by adding
criteria to this search format – for example, periods of
time and the like.) The connection is then established
by the command ‘Enable relational finds’ containing
the names of the file formats to be connected.

Once this has been done, we can generate a Find table
using ‘Find first,’ or we can build a list directly by
using ‘Build list from file.’ The generation of this list
is independent on the Main file setting. Any sorting is
set with the command ‘Set sort fields.’ Bear in mind,
however, that this is not a method for locating records
in a procedure one at a time. We have to think in terms
of tables at this point. This is a practical way of doing
things when you want to build lists – or print reports –

24 Search & Find Data Output

containing records from connected file formats.
Procedures 3 and 4 illustrate this.

‘Enable relational finds’ and Find tables 3

Set current list #L1
Define list {P_RSN,P_Name,CO_RSN,CO_Name}

Set search as calculation {CO_RSN=P_CompanyKey}
Enable relational finds {fPersons,fCompany}

Clear sort fields
Set sort field P_Name

Set main file {fPersons}
Find first (Use search,Use sort)
Repeat

Add line to list
Next

Until flag false

‘Enable Relational finds’ and Find tables 3
CO_RSN is the Record Seqence Number in the file
fCompany; the same is true for P_RSN and fPersons.
Please note that in the ‘Find first’ command, ‘Use
search’ and ‘Use sort’ must have been selected. It is
completely controlled by the search format and the
sort, no matter what the Main file is. If we neglected to
include ‘Use search,’ list #L1 would have consisted of
every conceivable combination of records in the two
files.

‘Enable relational finds’ and ‘Build list’ 4

Set current list #L1
Define list {P_RSN,P_Name,CO_RSN,CO_Name}

Set search as calculation {CO_RSN=P_CompanyKey}
Enable relational finds {fPersons,fFCompany}

Clear sort fields
Set sort field CO_Name

Data Output Search & Find 25

Build list from file (Use search,Use sort)

‘Enable relational finds’ and ‘Build list’ 4
Here the list is sorted by company name. Instead of
choosing the ‘Use sort’ option in the ‘Build list from
file’ command, we could have sorted the list later
using the ‘Sort list’ command. This would have been a
quicker method partly because it would give you the
option of preventing the ‘Working message’ from
turning up.

Find connected records

When two file formats are connected, there will always be one or
more records in one file linked to a specific record in the other one.
We can call the former the “child” file and the latter the “parent” file.
Let’s imagine that the Main file has been set to the parent file and
that we’re in the parent file’s window. What we want is to “scoop
up” all the relevant child records. This is just the opposite of what
we’ve being trying to do so far.

One–to–One

When we know that only one record is connected to each parent
record, all we have to do is call up the first record that has the right
value in the foreign key field (relational joins) or the “hidden copy”
of the RSN field from the file above (hierarchical connection). In
other words, we don’t need to look for any other records in the child
file that might also be linked to the current record in the parent file.

Find single child record – hierarchical 5

Set main file {fParent}
; Locate the desired parent record

Set main file {fChild}

26 Search & Find Data Output

Find on P_RSN (Exact match)
Redraw windows

Hierarchical 5
First we let the developer find a parent record. In
Procedure 5 we do a search in the fChild file. Strangely
enough, however, we refer to an indexed field in the
file above, i.e. fParent. The reason for this is that we
aren’t really looking at P_RSN, but at a sort of
invisible, hidden copy of this field. When we set up a
link from a child file to a parent file, Omnis generates
a foreign key field in the child file that we never really
get to see. Every time a new record is entered into the
child file, Omnis automatically copies the RSN value
of the parent record (which is currently in memory)
over to this “invisible” field. The copy is thus stored
together with each record in the child file. This field
also has its own index. When we use the ‘Find’
expression in Procedure 5, where Main file is the child
file and ‘Find’ still points to the RSN field in the
parent file, Omnis understands that the search is to be
carried out on the “invisible” foreign key field in the
child file.

Find single child record – relational 6

Set main file {fParent}
; Locate the desired parent record

Set main file {fChild}
Find on C_ParentKey {P_RSN} (Exact match)
Redraw windows

Relational 6
In this case, the logic is more “obvious” but perhaps
harder to digest. We already have a record in the parent
file, but we want to find a record in the child file that
has a foreign key field value equal to the value of the
key field of the parent file. To put it another way: we
want to find the child record that bears the stamp of its
parent. (In keeping with the modern trend toward high
divorce rates, this example contains only one parent

Data Output Search & Find 27

file.) The foreign key field in the child file contains the
parent’s mark. To facilitate matters, we use the parent
file’s Record Sequence Number, P_RSN, as the
identifying (i.e. key) field of the parent file. Thus the
value of P_RSN is the parent’s stamp.

Many–to–One

This is the most common situation when two files are linked. When
searching for records that are connected, we often end up with more
than one. These records can be placed in a list, to make it easy to
display them in a window.

Find several child records – hierarchical 7

Format variable FoLs_ChildRecords (List)
Local variable Lo_Forrige_P_RSN (Long integer)

Set main file {fParent}
Find first on P_RSN ;; Or find another record in fParent
Calculate Lo_Previous_P_RSN as P_RSN

Set current list FoLs_ChildRecords
Define list {fChild} ;; All the fields in fChild

Set main file {fChild}
Find on P_RSN (Exact match)
If flag true

Repeat
Add line to list
Next on P_RSN (Exact match)

Until flag false
End If

Set main file {fParent}
Find on P_RSN {Lo_Previous_P_RSN}

Redraw windows

Hierarchical 7
Admittedly, Procedure 7 is a bit on the long side – but
not without reason. We needed a list, so why not use
one with a name that makes sense? Since this list is

28 Search & Find Data Output

probably going to appear in the window, it would have
to be a format (not a local) variable. The loop that
builds the list will continue to run until the ‘Next’
command fails. In view of what we know about
unsuccessful searches, we should safeguard the RSN
value of the current parent record. This will help us
relocate the parent record when the loop has run its
course. When the loop has finished, the CRB for
fParent and fChild will be empty. This is easily
remedied with a simple search, as shown at the end of
the procedure.

Find several child records – relational 8

Format variable FoLs_ChildRecords (List)

Set main file {fParent}
Find first on P_RSN ;; Or find another record in fParent

Set current list FoLs_ChildRecords
Define list {fChild} ;; All the fields in fChild

Set main file {fChild}
Find on C_ParentKey {P_RSN} (Exact match)
If flag true

Repeat
Add line to list
Next on C_ParentKey (Exact match)

Until flag false
End If

Redraw windows

Relational 8
Even though the last ‘Next’ command in the loop fails
here, we won’t have the same problem as we did with
hierarchical connections. When the last search clears
the fields in fChild, nothing happens to fParent,
because these have not been linked by means of
Omnis’ hierarchical connections. So we might as well
leave the fields in the child file alone.

Data Output Search & Find 29

Many–to–Many

Many developers find that “many–to–many” linking is a fairly
complicated business. What’s hardest to swallow, perhaps, is the fact
that basically there is no easy way of generating links of this kind.
What we really need is a trick up our sleeve. And, lo and behold,
we’ve got one: a “link file.” Such a file contains the links between
the two files to be connected . This might seem to be a cop-out, but it
really isn’t. This method is often used and gives you very good
control over your data. It would have been a lot harder to find your
way around in the morass of data if the connections themselves had
been hidden from the developer.

fAutos fCustomers

fRentals

Fig. 9 Sample file structure for a car rental company, represented
hierarchically.

The mechanics of linking
The link file is connected to both of the files we want
to connect. Basically, when we have a ‘many–to–
many’ connection, there are three ways of viewing the
data: First, we can trace all the links between both files
(for a given period of time, for example). Second, we
can get hold of a specific record within one of the files
and see which records in the “neighboring file” it has
been connected to at some point or other (with the aid
of the linking file). We can also do this by using the
other file as our point of departure. Third, and lastly,
we can still locate records that are connected directly

30 Search & Find Data Output

(i.e. fRentals – fCustomers, and fRentals – fAutos),
just as we’ve always been able to.

Example: Car rental company

The following example models its procedures on a hypothetical
application for a car rental company. The company has a stable of
cars (fAutos) and of customers (fCustomers) who do business with
the company. Each rental registration (fRentals) is linked to one auto
(fAutos) and one customer (fCustomers). In other words, fRentals
serve as a link between fAutos and fCustomers. This gives us a
many–to–many connection between fAutos and fCustomers. Figure
9 shows us the links between the files, and the field names are shown
below in Figure 10.

fAutos fCustomers fRentals Comments
A_RSN C_RSN R_RSN Key fields
A_Make C_Name R_From_Date
etc. C_Addresse R_To_Date

etc. (R_CarKey) Foreign key (relational)
(R_CustomerKey) Foreign key (relational)

Fig. 10 Field names in the car rental company application

Count rental registrations for a specified period: Search on linking
file

The owner of the car rental company will naturalljy want to print a
monthly budget for the accounts. To do this, we do a search on
fRentals and thus call up whatever records are to be found within the
desired time period.

Generate a list of rentals for November, 1993 –
hierarchical 9

Format variable FoLs_Records (List)

Set current list FoLs_Records
Define list {fRentals,fAutos,fCustomers}

Set main file {fRentals}

Data Output Search & Find 31

Set search as calculation
…{R_From_Date>=dat("011193")&R_From_Date<=dat("301193"

)}

Build list from file (Use search)

Hierarchical 9
When the link file fRentals is linked to fAutos and
fCustomers by means of hierarchical connections, the
records in fAutos and fCustomers will appear when
they should, automatically. All we need to be
concerned with is getting hold of the right records in
fRentals. We have selected a search here and built a
list of records from fRentals. Since the fields in fAutos
and fCustomers are also included in the definition of
the list FoLs_Records, we will receive all of the
information at once.

Print many–to–many report from linking file –
hierarchical 10

Set main file {fRentals}
Set search name sPeriod ;; Decide on an appropriate period
Set report name rPeriodOverview
Print report (Use search)

Reports 10
Printing reports is a snap. We just manipulate fRentals.
We set up a search for the particular period for which
we want a data printout. Connected records in fAutos
and fCustomers automatically appear in the CRB. We
place selected fields from these files in the report, and
otherwise treat the report as if it had contained fields
from only one file. This is an example of what happens
when Omnis’ hierarchical connections come into their
own.

32 Search & Find Data Output

Generate a list of rentals for November, 1993 –
Relational 11

Format variable FoLs_Records (List)

Set current list FoLs_Records
Define list {fRentals,fAutos,fCustomers}

Set main file {fRentals}
Set search as calculation
{R_From_Date>=dat("011193")&R_From_Date<=dat("301193")}

Find on R_From_Date (Use search)
If flag true

Repeat
Single file find on A_RSN {R_BCarKey} (Exact match)
Single file find on C_RSN {R_CustomerKey} (Exact match)
Add line to list
Next

Until flag false
End If

Relational 11
If we use relational joins between fExpenses and
fAutos, and between fExpenses and fCustomers, we’ll
have to add a couple of extra commands to the
procedure. The principle is the same as with
hierarchical connections (see the preceding paragraph).
The difference lies in the fact that connected records
aren’t read in automatically. But we do have the
foreign keys to both of the connected files, which
enables us to find the records by using simple searches.

R_CarKey is the foreign key field in fRentals; it tells
us which car is linked to this rental. Likewise,
R_CustomerKey tells us which customer the rental
record is linked to. In other words, it tells us who has
rented the car. (A_RSN and C_RSN are the Record
Sequence Numbers of fAutos and fCustomers,
respectively.)

Reports
The connected records appear in the report if we use
‘Automatic Find’ fields. These report fields must have

Data Output Search & Find 33

the identifying fields in the connected files as field
names (A_RSN or C_RSN), and the corresponding
foreign key field in the Main file (fRentals) as the
comparison value. As for fAutos, we set A_RSN as the
field for Omnis to search in; its value is found in
R_CarKey.

See which cars a specific customer has rented:
Search using many–to–many connections

The owner, a curious man, would like to know what kinds of cars his
customers like. He can do this by using Procedures 12 and 13.

See which cars a specific customer has rented –
Hierarchical 12

Set current list FoLs_Records
Define list {fRentals,fAutos,fCustomers}

Set main file {fCustomers}
Find first on C_RSN ;; <- Here the developer selects a customer.

Set main file {fRentals}
Find on C_RSN (Exact match)
If flag true

Repeat
Add line to list
Next (Exact match)

Until flag false
End If

Clear sort fields
Set sort field A_Make
Sort list

Hierarchical 12
In Procedure 12, the search is still carried out in
fRentals, but we know that C_RSN (fCustomers) is
supposed to have a fixed value. When we have
determined which customer we want to peruse, we just
carry out a simple search on fRentals. This is exactly
the same thing that was done in the example under

34 Search & Find Data Output

One–to–One connections. Even though we refer to a
field in a connected file (Find on C_RSN), the search
is carried out in fRentals, with the index of the
aforementioned “invisible field.” Finally, in this
procedure we sort according to A_Make, which makes
it easier to see which car the customer has used the
most.

See which cars a specific customer has rented –
Relational 13

Set current list FoLs_Records
Define list {fRentals,fAutos,fCustomers}

Set main file {fCustomers}
Find first on C_RSN ;; <- Here the developer chooses a customer.

Set main file {fRentals}
Find on R_CustomerKey {C_RSN} (Exact match)
If flag true

Repeat
Single file find on A_RSN (R_CarKey)
Add line to list
Next (Exact match)

Until flag false
End If

Clear sort fields
Set sort field A_Make
Sort list

Relational 13
When we use foreign keys, the real logic behind file
connections becomes more apparent. When the
customer has been found, we know what value
R_CustomerKey is meant to have – that is, C_RSN.
We run the searches on R_CustomerKey, which should
be equal to C_RSN. Every time a new record in
fRentals is found, we get the value of the foreign key
R_CarKey, which in turn will guide us to the
connected record in fAutos. We use this foreign key
value to search fAutos, as shown in the ‘Repeat’ loop
in Procedure 13.

Data Output Search & Find 35

See which customers have rented a specific car:
Search with the many–to–many link

But then something really annoying happens: One of the cars has
suffered damage that wasn’t discovered during the routine check
between rentals. So the owner wants to find out who rented this car
last and thus smoke out the culprit. In principle, this is the same thing
we did in the previous example. This time around, however, the
constant is fAutos, and we can find out which customers the
corresponding records in fRentals are connected to.

Find out which customers have rented a car –
Hierarchical 14

Set current list FoLs_Records
Define list {fRentals,fAutos,fCustomers}

Set main file {fAutos}
;; <- A car should be chosen here.

Set main file {fRentals}
Find on A_RSN (Exact match)
If flag true

Repeat
Add line to list
Next (Exact match)

Until flag false
End If

Clear sort fields
Set sort field R_From_Date
Sort list

Hierarchical 14
This procedure calls up every incidence of this car’s
rental and everyone to whom it has been rented. The
sort at the end ensures that the contents of the list will
appear in chronological order.

36 Search & Find Data Output

Find out which customers have rented a car – Relational 15

Set current list FoLs_Records
Define list {fRentals,fAutos,fCustomers}

Set main file {fAutos}
;; <- Here a car should be chosen.

Set main file {fRentals}
Find on R_CarKey {A_RSN} (Exact match)
If flag true

Repeat
Single file find on C_RSN (R_CustomerKey)
Add line to list
Next (Exact match)

Until flag false
End If

Clear sort fields
Set sort field R_From_Date(Descending)
Sort list

Relational 15
There’s nothing revolutionary here, just a drill session
on the concept of foreign keys.

The basics of many–to–many linking

Whether you use hierarchical connections or relational joins, the link
file will always be your point of departure when carrying out a
search. In practice it’s enough to concentrate on this one file and get
good results. A search often yields many records. The essence of
many–to–many linking lies in having many connections. The same
records in the “upper files” (fAutos and fCustomers) are often linked
together many times by the link file (fRentals).

Constraining the number of records found
In some cases you might want to limit the result of the
search, e.g. show only one connection where there are
several connections between the same records. For
example, we can imagine that the owner of the rental

Data Output Search & Find 37

company wants to see which cars a customer has tried
out sometime or other in the past. Manipulations such
as this are definitely easier to do on lists. The
procedure for that is to carry out an ordinary, broad
search as shown in one of the examples above, and to
remove unwanted “duplicates” from the list later.
Alternatively, we can print out a report, selecting the
‘Duplicates blank’ option for the report fields in
question.

38 Search & Find Data Output

Searches Spanning Several Generations

Basically, the way to carry out searches that span several generations
is to run one generation at a time, applying the same principles we
have already described. In the examples below, the files have the
following connections and fields:

fParent

fGrand-
parent

fChild

Fig. 11 The file connections in the examples

fChild fParent fGrand-
parent

Comments

C_RSN P_RSN GP_RSN Key fields
C_Text P_Text GP_Text
(C_ParentKey (P_Grandparent

Key
Foreign
keys

Fig. 12 Field list for fChild, fParent and fGrandparent

Data Output Search & Find 39

Find Grandparent

Find grandparent – Hierarchical 16

Set main file {fChild}
Find first on C_RSN ;; <- Here the developer may choose a record.
Load connected records {fParent}

Hierarchical 16
As soon as a record in fChild has been found with the
‘Find’ (or ‘Find first’) command, the corresponding
record in the parent file will be read in. To include the
grandparent file as well, we can use the ‘Load
connected records’ command. It calls up the connected
record in the file above the one specified in the
command. We may repeat this in each generation of
files. In our case, however, we only need to do this
with one generation, i.e. fParent – fGrandparent.

Any great-grandparents would be dealt with the same
way: Let the “children” in each generation do the work
(i.e. use a ‘Load connected records’ command with
fGrandparent).

Find grandparent – Relational 17

Set main file {fChild}
Find first on C_RSN

Single file find on P_RSN {C_ParentKey}
Single file find on GP_RSN {P_GrandparentKey}

Relational 17
When we use relational joins, we have to search the
files themselves. This is okay, because for each record
searched, the foreign key to the record in the file above
appears at the same time. C_ParentKey belongs to the
file format fChild, but it contains the value that P_RSN
in fParent is supposed to have. That’s why we use
C_ParentKey in order to search fParent. When the
connected record in fParent has been found, we once
again get the foreign key of the fGrandparent record.

40 Search & Find Data Output

Since it is located in the P_GrandparentKey field, all
we have to do is a search in fGrandparent on G_RSN,
which should have the same value as
P_GrandparentKey.

Find all grandparents - Relational finds 18

Set current list #L1
Define list {fChild,fParent,fGrandparent}

Set search as calculation
…{C_ParentKey=P_RSN&P_GrandparentKey=GP_RSN}

Enable relational finds {fChild,fParent,fGrandparent}

Set main file {fChild} ;; Strictly speaking, Main file is superfluous
Find first (Use search)
While flag true

Add line to list
Next

End While

Enable relational finds 18
If we want to generate an entire table that shows all of
the connections between the three files, Omnis
provides us with an elegant built-in way of doing so.
Procedure 18 is reminiscent of Procedure 5, except that
it has one more file. Here the search calculation
contains two criteria, each of which equals the foreign
keys and the key fields in their respective files. The list
thus generated shows all of the series of links that
stretch from one end to the other. However, where the
only connection is between fGrandparent and fParent,
neither of these records will appear in the list.
Detached records that are not connected to any specific
record will also be omitted.

Find grandchild

One–to–One linking

If we have one–to–one connections at all levels, finding a grandchild
will be straightforward enough. We find the record (in the

Data Output Search & Find 41

“descendant” file) which is connected to the current record. The
process repeats itself for every level on down.

Find grandchild – Hierarchical 19

Set main file {fGrandparent}
Find first on GP_RSN ;; …or any other record

Set main file {fParent}
Find on GP_RSN (Exact match) ;; Find connected parent record.

Set main file {fChild}
Find on P_RSN (Exact match) ;; Find connected child record.

Hierarchical 19
GP_RSN is the Record Sequence Number of
fGrandparent, and P_RSN belongs to fParent. Each
search moves down one level and finds the first record
that’s connected to the record in the file above it.

Find grandchild – Relational 20

Set main file {fGrandparent}
Find first on GP_RSN ;; …or any other record

Single file find on P_GrandparentKey {GP_RSN}
Single file find on GP_ParentKey {P_RSN}

Relational 20
The ‘Single file find’ command works very well with
relational joins. Since the field P_GrandparentKey
belongs to fParent, Omnis can find the first record in
fParent where P_GrandparentKey matches GP_RSN.
When the connected record in fParent has been found,
we will know what value C_ParentKey must have –
namely, P_RSN. We can use this value to find the
connected record in fChild, as shown in the procedure.

Many–to–One

42 Search & Find Data Output

Normally, there will be many–to–one connections at each level when
files are linked. If we search downward through the file structure,
we’ll get a long list of “descendant” records for each record in every
generation. In other words, we’ll get a fan-shaped structure and end
up with a great many records on our hands. We have to view all the
records that have been found, anyway. We should ask ourselves what
type of information we are really after. The result of the searches will
be so extensive that it would be advisable to use a report instead.
Here, the records can be sorted by generation in the file structure. In
some cases there might not be very many records that are connected
at each level, and then such a search might be justified. Let’s take a
look at how to do this in the procedure that follows:

Find all grandchildren – Hierarchical 21

Format variable FoLs_Children (List)
Format variable FoLs_Parents(List)

Set current list FoLs_Children
Define list {fChild,fParent}
Set current list FoLs_Parents
Define list {fParent}

Set main file {fGrandparent}
Find first on GP_RSN ;; …or any other record

Set main file {fParent} ;; Generate FoLs_Parents
Find on GP_RSN (Exact match)
If flag true

Repeat
Add line to list
Next on GP_RSN (Exact match)

Until flag false
End If

Set main file {fChild} ;; GenerateFoLs_Children
For each line in list from 1 to #LN step 1

Calculate P_RSN as lst(P_RSN)
Find on P_RSN (Exact match)
If flag true

Repeat
Set current list FoLs_Children
Add line to list
Next on P_RSN (Exact match)

Until flag false
End If

Data Output Search & Find 43

Set current list FoLs_Parents
End For

Generate FoLs_Parents; first Repeat loop 21
First we add all of the parent records that are
connected to the grandparent record to a list
(FoLs_Parents). When ‘Next’ in the first ‘Repeat’ loop
finally fails, the fields in fParent and fGrandparent will
be cleared from the CRB; but the FoLs_Parent list is
retained.

Find all connected child records; second Repeat loop 21
After this we go through FoLs_Parents, one line at a
time, and find the records in fChild that are connected
to each and every parent record in the list. Any child
records that we find we’ll place in the FoLs_Children
list. When the procedure comes to an end, we’ll have
gotten hold of all the records in fChild that are
connected to the record in fGrandparent via fParent. In
addition to all of the fields in fChild, the
FoLs_Children list will also contain the parent file’s
RSN (P_RSN), which should make it possible to find
out which parent records the various child records are
connected to.

Find all grandchildren – Relational finds 22

Set current list #L1
Define list {fChild,fParent,fGrandparent}

Set search as calculation…
…{C_ParentKey=P_RSN&P_GrandparentKey=GP_RSN…
…&GP_Text="Ancestor"}

Enable relational finds {fChild,fGrandparent,fParent}

Set main file {fChild} ;; Strictly speaking, Main file is superfluous
Find first (Use search)
While flag true

Add line to list

44 Search & Find Data Output

Next
End While

Relational finds are the answer 22
We can circumvent the whole problem by using
‘Relational finds.’ This solution is a bit handier and
more streamlind than using ‘Find,’ although it may be
less expressive. Procedure 22 enlarges somewhat on
Procedure 18. Please note the search calculation. Here
we’ve added an extra search criterion. Our point of
departure, the record in fGrandparent, is
“GP_Text=‘Ancestor’.” When the search has been set
this way, all of the connected records will appear.
Don’t forget that there must be connections between
every generation. This means that a parent record must
be connected to the grandparent record, and a child
record must be connected to this parent record before
any of the three records can appear in the Find table.

Data Output Search & Find 45

Search Formats

Search formats are an integral part of Omnis. They greatly simplify
the task of making a selective and successful search. Moreover, for
the most part they are quite quick. The developer usually equips
himself with a fair supply for his own use, but the user can also
create his own. We aren’t going to get into the nitty-gritty of search
formats here; we’ll take a closer look at some of their more
functional aspects.

Fig. 13 Standard dialog box for ‘Prompt for search format’

Prompt for search format

This command is a “go-ahead,” as it were, allowing the end-user to
use his own search formats. Without any further programming on the
developer’s part, the user can generate, modify, and activate his own
search formats. This is a powerful tool, and an especially handy one
for executing a search with complex conditions.

The standard pushbuttons in Omnis allow only for searches with one
criterion. For example, there’s no use in filling out more than one
field in a window when a ‘Prompted find’ is carried out, because the
only index used will be the last one filled out. Either the user must
create his own search formats or you must apply tailor-made
procedures.

46 Search & Find Data Output

Disadvantages with user-made search formats
There are some disadvantages, however. To the user,
the process of creating search formats might appear
unduly cumbersome for trivial search tasks. Not only
that, but the user has to understand the meaning of the
field names that have been used in the application.
Often, the developer will have to use very long field
names. It isn’t possible to call up the field list
(alt/cmnd-9) as long as the ‘Design’ menu isn’t visible.
If the developer uses a prefix in the field name, the
user will also need to kow this prefix in order to
correctly type in the first couple of letters in the field
name. Normally, the user has only to key in these few
letters and a popup list of alternatives will appear. As
an alternative to long, “self-explanatory” field names,
the user can jot down a list of the field names and their
meaning. However, this really isn’t a very satisfactory
solution, either.

The naming of search formats
Finally, you might discover that it is hard to find
suitable names for search formats. Even experienced
developers often assign names that are totally
unrecognizable a few months later. Users are faced
with the same problem, but they have the advantage of
seeing the application and their own search formats
every day. This makes it easier to memorize names –
even cryptic ones. The standard list that ‘Prompt for
search’ displays is very narrow, and doesn’t show very
many letters of the search format names. If the user
chooses to use long, descriptive names, he’ll have to
scroll horizontally or visit the ‘Rename’ dialog box
(where the full name is displayed) in order to recognize
his search formats.

Conclusion
I believe that search formats created by end-users are
very handy as an alternative to and possible
enlargement upon existing search options in an
application. However, the most advanced searches
should be built-in in a way that makes them easier for
the user to use. One way of doing this is to use your

Data Output Search & Find 47

own ‘Enter data’ to assemble the search criteria, and
then generate lists that are displayed in separate
windows. Ad hoc reports are yet another good
alternative; short reports often serve the same purpose
as searches.

Flexible search formats

When a developer uses search formats, there is little point in using
fixed values in the criteria; it only limits the utility of the search
format. A typical example of a search is to limit the period of time
for which a report is written. If the user should want to see the
figures for November, this doesn’t necessarily mean, of course, that
he will always be interested in this particular month. This is why we
need a variable as a comparative value.

Let’s take another look at our example of the car rental company
again. fRentals contains R_From_Date and R_To_Date. To simplify
this a bit, let’s concentrate on R_From_Date. This date is supposed
to lie within a specific time period. We use two variables to set the
period, e.g. gl_Period_Beginning and gl_Period_End. (These two
must either be ‘Library’ variables or belong to a file format.) Both of
them are date variables, with the same date format as R_From_Date.
The search format will look like this:

R_From_Date >= [gl_Period_Start]
AND
R_To_Date <= [gl_Peroid_End]

Note that the [gl_Period_Beginning] and [gl_Period_End] variables
must be enclosed in square brackets. Strictly speaking, the “AND”
line is superfluous. The user can assign values to these two variables
in an appropriate window, and the subsequent report will thus be
generated from records within the desired time period.

Search formats versus ‘Set search as calculation’

Before version 2.0 of Omnis 7, searches defined with ‘Set search as
calculation’ were not analyzed with the thought in mind that one of
the existing indexes in the file formats could be used during the

48 Search & Find Data Output

search. The search was therefore always much slower than when
search formats were used. Now, however, search criteria are closely
monitored, and the search is often just as quick with search formats.
This is why the distinction between search formats and “search
calculations” is no longer as clear-cut.

Pros and cons
When you’re in the middle of programming a
procedure and suddenly realize that you need a search
with two conditions (e.g. a time period), it’s very easy
to set up the search as a calculation. It’s only when the
conditions begin to proliferate that you need to resort
to search formats. This gives you a better overview of
all the conditions. Then again, search calculations can
quickly become incredibly messy. However, they
always have the advantage of allowing the developer
to see the entire contents of the procedure. This way,
nothing is hidden. A search format, on the other hand,
is protected from the gazing eyes of the inquisitive
developer. It has to be called up specifically if its
contents are to be changed, and whatever is there you
are obliged to remember when editing the procedure.

Speed
The difference in speed between the two should be
tested in every single procedure. Search calculations
are quickest on the simpler searches, but only as long
as you avoid setting up calculations that have to be
repeated for every index value that is checked. This
dramatically favors search formats, which in certain
cases avoid these “repetitive calculations.”

Data Output Search & Find 49

Creating search formats with notation

The notation system in Omnis lets you create search formats for the
end-user. These formats are generated from whatever information
was entered during what the user regards as an otherwise normal
‘Prompted find.’ This method absolves the user from having to work
with search formats, making the application easier to use.

We’ll use a standard Omnis window as our point of departure, but
change the ‘Find’ pushbutton to ‘User-defined,’ and put the
following procedure under:

Find 23

Local variable Lo_Last_RSN (Long integer)

If #CLICK
Calculate Lo_Last_RSN as B_RSN ;;…Your RSN in the Main file
Clear main file
Redraw windows
Enter data
If flag true

Call procedure pMakeSearchFormat/1 {A•Main procedure}
Else

Single file find on B_RSN {Lo_Last_RSN}
Redraw windows

End If
End If

The Find procedure 23
The procedure clears the Main file and uses ‘Enter
data’ to get the user’s search data. If the user
interrupts, the procedure will look for the previous
‘current’ record. In order to achieve this, a copy of the
Main file’s Record Sequence Number is used. In this
procedure, the copy is known as Lo_Last_RSN. The
RSN field here is called C_RSN. If the user presses
OK, Procedure 24 will run:

pMakeSearchFormat/1 {A•Main procedure} 24

Local variable LoLs_FieldsInMainFile (List)
Set current list LoLs_FieldsInMainFile

50 Search & Find Data Output

Set search name sEmptySearchFormat
Build field names list (Clear list) {[sys(82)]}
Redefine list {Fo_Fieldname}

For each line in list from 1 to #LN step 1
Load from list
If len(fld(Fo_Fieldname))>0

Call procedure pMakeSearchFormat/2 {A1•Add line to…
End If

End For

Find (Use search)
If flag false

Sound bell
End If
Redraw windows

Revert format {sEmptySearchFormat}

The basic search procedure 24
This procedure can be run from any window, provided
the appropriate Main file has been set. With the ‘Build
field names list’ command, the column’s name will
automatically be #S5. To make the code clearer, we
can change the list definition and insert Fo_Fieldname
instead. To save time, sEmptySearchFormat, the
search format we’re going to use, will already have
been created. It’s empty and doesn’t contain any lines.

After this, the procedure goes through the
LoL_FieldsInMainFile list and checks whether the
fields contain any data. If a field turns out not to be
empty, the ‘{Add line to search format}’ subprocedure
is run. When every field has been checked, the search
begins.

Finally, the search format is emptied of everything that
had been added by the reloading into memory of the
original empty version of sEmptySearchFormat.

pMakeSearchFormat/2 {A1•Add line to search format} 25

Calculate Fo_Fieldtype as [sys(82)].[Fo_Fieldname].$type

Data Output Search & Find 51

Switch Fo_Fieldtype
Case "integer","number","boolean","sequence"

If fld(Fo_Fieldname)=0
Quit procedure

End If
Calculate Fo_Linetype as kSLeq

Case "char"
If mid(fld(Fo_Fieldname),1,1)="*"

Calculate Fo_Fieldname as
…(Use fld() of name)

Calculate Fo_Linetype as kSLcon
Else

Calculate Fo_Linetype as kSLbeg
End If

Case "date"
Calculate Fo_Linetype as kSLeq

Default
Quit procedure

End Switch

Set reference Fo_LINE to $formats.sEmptySearchFormat.$objs.$add
…(Fo_Linetype,"","")

Calculate WASDONE as Fo_LINE.$linetype.$assign(Fo_Linetype)
Calculate WASDONE as Fo_LINE.$fieldname.$assign(Fo_Fieldname)
Calculate WASDONE as Fo_LINE.$text.$assign(fld(Fo_Fieldname))

Setting up single lines in the search 25
Each search line must be consistent with the field type
of the field it contains. Therefore, the Fo_Fieldtype
variable will be assigned the field type of the field in
question. See the following:

Numbers
Number fields left empty by the user are usually given
the value zero by Omnis. To avoid superfluous search
criteria with the number zero, we simply refrain from
setting up a search line. But if the number is higher
than 0, we set the search criterion to ‘Number field
equals numerical value.’ Why don’t all you sharp
developers out there rise to the challenge and come up
with something better!

52 Search & Find Data Output

Text
With text fields, we usually have ‘Text field begins
with specified text’ as the search criterion. If the user
begins his search text with an asterisk (“*”), the search
will be set to ‘Text field contains specified text.’ The
asterisk will, of course, be removed before the search
criterion (the search line) is added.

Other field types
Searching list fields, graphic fields, binary fields, etc.
is a dead-end street.

Adding a line to the search format
Because of a little bug in versions 2.0–2.2, we had to
go out of our way a bit. In principle, a notational
expression using ‘add’ should have sufficed. But what
we actually have to do first here is to create a line and
then change it’s comparison type ($linetype), current
field name ($fieldname) and comparison value ($text).
But this is no big deal.

Format variables
The following format variables were used in
Procedures 23–25 (next page):

Format variables 26

Format variable WASDONE (Boolean)
Format variable Fo_LINE (Item reference)
Format variable Fo_Linetype (Character)
Format variable Fo_Fieldtype (Character)
Format variable Fo_Fieldname (Character)

These procedures have been slightly rewritten; but the
idea and the original procedure is Tommy Obæk’s
from Gatsoft A/S. Thanks, Tommy!

Data Output Search & Find 53

Speed Tests

The test method

The results of these tests should be interpreted philosophically. The
tests were performed on a PowerBook 180 equipped with adequate
RAM and a relatively fast hard disk. I have assumed that the
differences between the various search methods will be the same on
other machines, e.g. IBM compatibles, since Omnis applications are
binary platform compatible. The procedure used was a variation on
the following:

Single search: Search as calculation 27

Calculate Fo_Tot_Start as #CT

Calculate Fo_Number_Search as 100
Set search as calculation {B_TXT="Stallion-5"}

Calculate Fo_SearchStart as #CT
For #1 from 1 to Fo_Number_Search step 1

Find on B_TXT (Use search)
End For
Calculate Fo_SearchEnd as #CT

Calculate Fo_Ticks as Fo_SearchEnd-Fo_SearchStart
Calculate Fo_Seconds as Fo_Ticks/60
Calculate Fo_ms_Per_Search as Fo_Seconds/Fo_Number_Search
Calculate Fo_Tot_Sec as (Fo_SearchEnd-Fo_Tot_Start)/60

The answer was recalculated in milliseconds, for the purpose of
comparison with the hard disk’s access time. However, the only
thing that really counts here is ticks, since they form the basis of the
test as a whole. This is why the procedures were run until their clock
times stabilized, and then the lowest result was written down. The
numbers in the graphs represent milliseconds per search and should
be free from the influence of any preparatory work, e.g. the
processing of search formats. The searches were carried out on a data
file containing 412 records. All of these factors must be taken into
account, and none of the results should be taken for granted.

54 Search & Find Data Output

Simple searches on an identified record

0

5

10
15
20

25
30

35
40

Find on…

Search as calculation

Search format

Fig. 14 Speeds tested with variations in single searches

Comments
With single searches there is little point in using more
advanced methods. ‘Find’ with ‘Exact match’ is
clearly the quickest, and that’s all you need in order to
find an identifed record.

Field larger than a certain value

0

5

10

15

20

25

30

35
40

Find…Next until value>threshold

Search as calculation

Search format

Fig.15 Speeds tested with variations on searches for field values
greater than a specific value

Data Output Search & Find 55

Comments
Surprisingly, ‘Search as calculation’ proved to be as
quick as ‘Find.’ Once again, search format was the
slowest.

(When I used ‘Find,’ I located the first record that fit
the comparison value and then “paged” my way
forward with the aid of ‘Next’ until the value exceeded
the comparison value.)

Two fields, each with their respective values

0

10

20

30

40

50

60
Combination Exact match/Search as calc

Search as calculation

Combination Exact match/Search format

Search format, no "AND" line

Search format with "AND" line

Fig. 16 Speeds tested with variations on searches with two search
criteria

Comments
All sorts of combinations were possible here. The
quickest in the test was a ‘Find’ with ‘Exact match’
and ‘Use search’ selected. The first search criterion
was set by the designation of a value in the ‘Find’
command. The other one was in the search calculation
in ‘Set search as calculation.’ Pure ‘Search as
calculation’ searches proved to be quicker than a
divided option with ‘Find (Exact match, use search),’
where the second of the search’s two criteria had been
set with the aid of a search format. Finally, we see that
inserting an ‘AND’ line in the search format appears to
reduce the speed somewhat.

56 Search & Find Data Output

Conclusion

This test is not meant to provide a complete study of what types of
searches are quickest at any given time. This is too comprehensive a
subject for that. In any case, I would like to go out on a limb and
suggest a few guidelines:

Simple searches
Simple searches are undoubtedly quickest using ‘Find.’
Relatively uncomplicated searches with few conditions
appear to run more quickly when the search has been
set with ‘Set search as calculation’ than when they’ve
been set with a search format. Nevertheless, search
formats do have a special mission, and in the more
complicated searches it’s hard to get along without
them.

Rational use of searches
The odd search seldom involves any significant delay
for the end-user. It is when lists are built, or when
many searches are carried out in a similar manner, that
you should think about speed. This is particularly the
case in multi-user environments (when SQL is not
used), where all of the information is exchanged over a
network. The transmittal speed here is low compared
to the local link between computer and hard disk.
Basically you’ll only have to deal with the most
vulnerable procedures. Here you can try out the
options available for ‘Find,’ ‘Search as calculation’
and search formats; and, naturally, it’s a good idea to
try the simplest one first. Then you take down the time,
as shown in Procedure 25. And remember: don’t delete
any of the test procedures before you’ve found out
which one is the quickest.

Section 7: Communication

Section 8: 3rd.Generation Programming

Chapters:

1. External Routines

2. Introduction to Notation

External Routines

Introduction.. 2
What Is an External Routine? .. 3
Examples of External Routines .. 4

Ergohygeon
pc-ORDERLY BOOK
Plan info

Can I Create an External Routine? .. 6
Where Do External Routines Have to
 Be Before I Can Have Access to Them? ... 7
When Should I Use External Routines? .. 8
Which Functions in Omnis Are Used in
 Connection With External Routines? .. 10

External routines
Event handlers

What Functions May I Use In an External Routine?.. 12
What Does the Code in an External Routine Look Like? 14

LibMain
WEP

The Stack Problem... 17
What If I Want to Know More?.. 18
Difficult Words.. 19
An Example with Source Code ... 21

AB_INI.C
AB_INI.DEF

2 External Routines 3rd Gen. Programming

Introduction

External routines – A familiar concept to most Omnis programmers,
but not everyone knows what it really means, or what external
routines can be used for. And when the subject turns to C-
programming and “Syntax errors,” there’s no denying it: many get
chills down their spine. In this chapter we’ll attempt to demystify the
concept somewhat, because it isn’t as difficult as it sounds. In our
considered opinion, external routines are just what the doctor
ordered; you will need them sooner or later, even though at present
you may not even know they exist!

3rd Gen. Programming External Routines 3

What Is an External Routine?

Briefly put, the ultimate aim of an external routine is to enhance the
existing functionality of Omnis. We may not care to admit it, but
there are times when Omnis falls short with respect to traditional
programming languages. Some things are impossible to solve with
Omnis alone; other things can be handled more effectively by an
external routine than by creating a lot of complex code in Omnis.

We can take this a step further and say that it is a matter of writing
special functions in C (or some other programming language) and
subsequently compiling these in a library (DLL in Windows,
Extension for Mac). This library can then be accessed from Omnis by
calling functions that are stored in the library.

NOTE: It’s important to realize that external routines, unlike Omnis
itself, are platform-dependent; that is, you can’t just take an external
routine written for Windows and use it on your Macintosh, and vice
versa. Throughout this chapter, the discussion and all our examples
will take the Windows version of Omnis 7 as their point of departure,
where the external routines go by the common name “DLLs.”

4 External Routines 3rd Gen. Programming

Examples of External Routines

Nowadays a number of major commercial programs use external
routines, albeit in different ways. See the three examples that follow:

Ergohygeon

This is a system for a company health service, developed at the Dept.
of Computer Science, University of Bergen, Norway. Here external
routines are used for drawing special kinds of graphics for job
satisfaction profiles, health curves, etc. based on data stored in the
Omnis database.

pc-ORDERLY BOOK

Fig. 1 Screen dump from the application “pc-ORDERLY BOOK”

3rd Gen. Programming External Routines 5

This is an orderly book system for use by the municipal police
department, developed by GAT - Soft as. It uses external routines to
load information from a flat file database over into Omnis 7.

Plan info

This is a system for city planning, developed by the School of
Architecture in Århus, Denmark. The external part utilizes
geographical information stored in Omnis for the drawing of maps.

6 External Routines 3rd Gen. Programming

Can I Create an External Routine?

In principle, anyone can create his or her own external routine for
enhancing functionality in Omnis.

To begin with, Omnis 7 and C programming are about as much alike
as strawberries and pickled herring. It’s just not possible to make
syntax errors in Omnis when entering code; and it’s easy to test any
changes you may have made. When programming in C, however,
you have to insert code in a number of different text files.
Furthermore, you are not assisted by syntax checking, each command
covers only small tasks, and all changes must be compiled (i.e.
translated to a language the computer understands) before they can
be tested.

So our conclusion is: Unless you are an experienced programmer
already, you should steer clear of external routines to begin with.
(Instead, get in touch with your local dealer; he’ll help you!)

For another thing, you need some extra software. As we mentioned,
an external routine has to be compiled before it can be utilized, and
for this you will need a compiler. Blyth recommends Microsoft C,
version 7.0; but other compilers, such as Borland C++, version 3.1,
may also be used. A compiler also contains a number of other tools
for program development.

3rd Gen. Programming External Routines 7

Where Do External Routines Have to Be Before I
Can Have Access to Them?

We get a number of inquiries about how to localize external routines
so that they will be accessible for all Omnis applications. The
simplest thing is to place all external routines just where Omnis 7
expects them to be, i.e. in the External Catalogue under Omnis 7 for
Windows (for example, C:\OMNIS7\EXTERNAL\). If you are a
Macintosh user, all external routines should be placed in the folder
entitled “Omnis Extensions.”

Fig. 2 Screen dump showing the Commands Extension list.

All external routines that lie in the External Catalogue will be read by
Omnis at startup. Available functions will be included in Omnis’
commands list (under the Command Extensions group), so that you
can use these when developing the application.

You may also place external routines elsewhere; but then you must
take care to include the Path to the routine when it is called. The
disadvantage of this is that it leads to relatively inflexible solutions.

8 External Routines 3rd Gen. Programming

When Should I Use External Routines?

External routines have a wide variety of uses, and it’s difficult to be
categorical about when you should use them. There are times when
you will have no other recourse than to create external routines,
simply because Omnis alone cannot meet all your needs; at other
times you will be faced with situations in which you can resolve a
problem both in Omnis and by using external routines. Deciding
which option is best is a matter of weighing the work involved in
creating an external routine against the benefits provided. What
follows is a short list of scenarios you could encounter; in all of
them, external routines should figure as viable options in your
decision.

Speed
You are doing major calculations or loop operations,
and are finding it to be slow going.

Complexity
Difficult calculations with many if-tests and function
shells can often be done simpler (and quicker) with an
external routine.

External equipment
Omnis does not have built-in protocols for
communicating with all kinds of peripherals. You must
resort to an external routine if, for example, you want
to import pictures directly from a video camera.

Graphical pushbuttons
Omnis does not provide predefined pushbuttons of its
own, even though you can produce nice effects by
placing a pushbutton area on top of a drawing with a
button. But among the Omnis examples there is an
external routine called ‘COOLBUTN.DLL,’ which
contains graphical pushbuttons that you can enlarge to
include your own buttons. Check this one out!

3rd Gen. Programming External Routines 9

Windows API functions
The function library in Omnis is not as extensive as the
API library in Windows. If you wish to make use of
functions from here, you must create an external
routine to get to them. Typical examples of API
functions not found in Omnis are the treatment of .INI
files, drawing on screen, and the startup of .HLP files.

Drawing on screen
The drawing of (for example) graphs using Omnis
alone is a major undertaking. Consequently, many have
developed external routines for this very thing, for
example in the “PlanInfo” and “Ergohygeon” systems
(both described earlier in this chapter). You can use the
“Graph-It” library routine included in the Omnis 7 Plus
package to draw your own graphs!

.INI files
In Omnis there is no way to store initializing
information (i.e. remember the settings for different
users each time) in .INI files like other Windows
programs do. (Of course, the information can be stored
in the datafile, but this entails a lot of extra
programming work to determine which user had which
settings.) We have worked out a nice little routine for
this, which is called by specific parameters. The
routine is given at the end of this chapter.

10 External Routines 3rd Gen. Programming

Which Functions in Omnis Are Used in
Connection With External Routines?

Omnis provides a total of 6 different functions for dealing with
external routines. A brief description follows. These commands are
described in detail in the Omnis documentation. The functions are
divided into two groups: one for external routines and one for event
handlers.

External routines

Call external routine

Calls a specific function (also with parameters) in a specific library,
for example ‘Call external routine’ “MYROUTIN/
ShowAnalogClock (#T).” This results in the function
ShowAnalogClock in the routine library MYROUTIN being called
and carried out. The value of #T (i.e. the computer’s system clock) is
used as the function parameter.

Call external with return value

Like the function above, but here you can get the function to return a
value to a field in Omnis 7, e.g. #S1.

Load external routine

Establishes a permanent link to an external routine library. Can be
used if the routine library will be called many times and you want
greater speed. When the routine has been loaded the first time, the
next ‘Call external routine’ will go a lot faster.

Unload external routine

Removes a permanent link (established with ‘Load external routine’)
to a routine library.

3rd Gen. Programming External Routines 11

Event handlers

‘Event handlers’ are external routines that are a bit out of the
ordinary. As opposed to an external routine that is called once and
then runs to completion, an event handler will lay low and “listen”
for special events. If one should occur (for example, the cursor
moving from one field to another) a function in the event handler will
spot it before the field gets #BEFORE. In such cases you can specify
whether you want Windows or Omnis to handle the event.

Load event handler

Loads an event handler into memory and asks it to begin listening for
events.

Unload event handler

Deletes any event handlers from memory and ceases to listen.

12 External Routines 3rd Gen. Programming

What Functions May I Use In an External
Routine?

In principle there are two types of functions that are accessible from
your external routine:

Windows API functions

All the standard functions that are used in traditional Windows
programming (a considerable number!). You will find a complete
rundown of these in the documentation that accompanied your
purchase of a compiler. Some examples of API functions:

CreateWindow (...)
Create a new window.

GetDC (...)
Get the DC (Device Context) of a window.

EnableWindow (...)
Enable / Disable a window.

Omnis callback functions

A set of functions Blyth has compiled to enable a “normal” Windows
library (DLL) to communicate with an Omnis application. Most of
these functions will be familiar to you from traditional Omnis
programming. Which functions are available, and which parameters
they need is all explained in the documentation for external routines
that is part of Omnis 7 Plus. Some examples of callback functions:

DoListOp (...)
Execute a list of commands.

DoPrepare (...)
Run a ‘Prepare for Edit / Insert.’

ShowWorking (...)
Shows an Omnis “Working” message.

3rd Gen. Programming External Routines 13

What Does the Code in an External Routine
Look Like?

It’s hard to be specific about what the code in an external routine
ought to look like (depending, as it does, on the programming
language, functionality, and the number and type of functions);
nevertheless there are certain rules you must follow.

There are two functions that are obligatory. No matter what type of
external routine you are creating, the content of these two functions
should remain very nearly the same each time.

LibMain

The first one is called ‘LibMain()’ and is essential if Omnis is to be
able to establish and maintain contact with the external routine.

int FAR PASCAL LibMain (HANDLE hInstance, WORD wDataSeg, WORD
…cbHeapSize, LPSTR lpszCmdLine)
{
 if (hLibInstance == NULL)
 hLibInstance = hInstance;
 if (cbHeapSize != 0)
 UnlockData (0);
 return (hLibInstance) ? TRUE : FALSE;
}

14 External Routines 3rd Gen. Programming

WEP

The second function, ‘WEP(),’ is actually a mirror image of
‘LibMain().’ This function sees to it that the internal memory is
cleared after the external routine has finished running.

int FAR PASCAL WEP (int bSystemExit)
{
 return 1;
}

You also need at least one function that can be called from Omnis.
This function also has a specific “shell,” but the content will vary
each time.

void FAR PASCAL ReadInteger (int mode, HANDLE far *ref, HWND
mWind,…
HWND topwindow, HWND instance, FARPROC callback)
{
 switch (mode)
 {
 case ext_load:

;; The DLL is called using the ‘Load external routine’ command.

 < Your commands>
 break;

 case ext_unload:
;; The DLL is called using ‘Unload external routine.’

 < Your commands >
 break;

 case ext_call:
;; The DLL is called using ‘Call external routine (with return value).’

< Your commands >
 break;
 }
}

NOTE: Functions that are called from Omnis (e.g. the function
above, for example) must be exported in the DEF file so that Omnis

3rd Gen. Programming External Routines 15

knows the name of the functions in the DLL! (See the accompanying
example.)

In addition to the functions above, you are free to create your own
within the external routine, just as you would in regular programs.

16 External Routines 3rd Gen. Programming

The Stack Problem

Those of you who are familiar with the problems involved in
handling memory (computer memory, that is!), also know that the
size of the stack and the heap are important factors in external
routines.

External routines have a rather special way of dealing with stacks. In
regular programs, the size of the stack is apportioned at startup.
External routines (DLLs) are less fortunate; they are obliged to share
the stack with the program from which they are called.

For us programmers, this can cause some problems with, among
other things, the declaration of variables and the call of certain API
functions. The nature and extent of the problem varies, depending on
what’s wrong, and can include everything from strange output to a
total crash of Omnis.

So you should be careful about which functions you use (try to avoid
C-functions from ‘stdio’ and ‘stdlib,’ for example), and about how
variables are declared (don’t use static variables).

3rd Gen. Programming External Routines 17

What If I Want to Know More?

Neither Rome nor Omnis were built in a day, so don’t be surprised if
it takes you a while to get the hang of external routines.

This chapter has given you a bare-bones understanding of what
external routines are, how you use them, and a few simple examples
of how to make them.

If you can see the usefulness of external routines and should wish to
learn more about them, we have a few suggestions:

1. Read Blyth’s external routines documentation.

2. Check out the examples that are done in the Omnis 7 Plus
package. They contain a lot of good code you can use as a point
of departure for your own routines.

3. If you get stuck, get in touch with your dealer. There’s always
someone there who can help you; this will also help us to keep
abreast of difficult situations and pass the benefits on to others in
the same boat.

Good luck!

18 External Routines 3rd Gen. Programming

Difficult Words

API
Application Programmers Interface. A set of defined
functions available for a special program, for example
Windows.

C
Programming language. The most used language for
the development of Windows-based software. All
examples of external routines that are packaged with
Omnis 7 for Windows are written in C.

C++
An object-oriented programming language. Used,
among other things, for the development of Windows-
based software. Omnis 7 itself was written in C++!

Callback functions
Collective name for those Omnis functions you may
use in your external routines. These functions are
described in a separate document that is packaged with
Omnis 7 Plus.

DLL
Dynamic Link Library, a collection (library) of
external routines in a file.

External areas
A new type of field included in Omnis 7, v1.2. The
fields are partly controlled by Windows (an external
area handler) and partly by Omnis. Areas of use
include graphical presentations, specially constructed
fields, live video, and multi-media applications.

3rd Gen. Programming External Routines 19

External routine
A function programmed (in a 3rd-generation language)
with a view to enhancing Omnis’s functionality.

Event
The event during the running of a program, e.g.
pressing the left mouse button, maximizing a window,
etc.

Event handler
A routine that spots events and processes them. Events
that are not processed are returned to Omnis to be
handled there.

.INI
A type of file used in Windows to remember a specific
program setup. The files are stored, as a rule, in the
Windows catalogue (as pure text files), and you can
view the contents in, for example, Notepad.

Compiler
A program for translating the code we have written
(source code) to a language your computer understands
(object code).

LibMain()
Library Main, an obligatory function in an external
routine for Windows.

PASCAL
A programming language. Can be used to develop
Windows-based software and external routines.

WEP()
Windows Exit Procedure, an obligatory function in an
external routine for Windows.

20 External Routines 3rd Gen. Programming

An Example with Source Code

We have chosen to conclude this short introduction into external
routines with a complete code example written with Borland C, v3.1.
The code on the following pages is also available on disk from
AlphaBit (Norway), or Blyth; this will save you from having to type
it all in yourself.

Our code example is called ‘AB_INI’ ; it is used in the manipulating
of .INI files in Windows.

CALLBACK.C Omnis callback functions

CALLBACK.H Definition of Omnis callback functions

AB_INI.C Source code for separate functions for the
manipulating of .INI files

AB_INI.DEF Definition file with export of functions

AB_INI.DLL A compiled external routine

AB_INI.PRJ Project file for Borland C, v3.1

AB_INI.APP The application

See the listing of the files we have created (AB_INI.C and
AB_INI.DEF) in the pages that follow.

3rd Gen. Programming External Routines 21

AB_INI.C

/**
AB_INI.DLL - External routine for handling .INI files in Windows.
This DLL can be called from Omnis by the following 4 functions:

ReadInteger()
ReadString()
WriteInteger()
WriteString()

See a description of the various functions and their related
parameters below.

VERSION 1.1 March 28, 1993, Amund Haldorsen

**/

#include <windows.h>
;; Standard Windows API functions; must be included.

#include "callback.h"
;; Omnis callback functions for external routines

/*******Global pointer and variables*****************/

HANDLE hLibInstance;
;; Library Instance, a pointer to the external routine.

char szFilename[100];
;; Variable for the name of the .INI file.

char szSectionName[100];
;; Variable for [SECTION_NAME] in the .INI file.

char szKeyfield[100];
;; Variable for KEY_FIELD= in the .INI file.

char szInitstring[100];
;; Content of the initializing string if the .INI is empty.

char szValue[100];
;; The value read from or written to the .INI file (text).

int nInitvalue;
;; The content of the initializing value if the .INI file is empty.

int nValue;
;; The value to be read from or written to the .INI file (number).

int get_parameter_info(FARPROC callback);

22 External Routines 3rd Gen. Programming

;; Function for ascertaining file name, section name and key name on the
basis of the parameters sent from Omnis.

/*==
ReadInteger()

This function reads in an integer from an .INI file.
The function has the following four parameters:

szFilename The name of the .INI file.
szSectionName The name of the section in the .INI file.

[SectionName]
szKeyfield The name of the key field from which the value

is to be read.
nInitvalue The value to be returned if this line doesn’t exist

in the .INI file.

NB! This function must be called using the ‘Call external with return
value’ command, where you designate the field to which the value is to
be returned.
== */
void FAR PASCAL ReadInteger (int md, HANDLE far *ref, HWND mWind,
…HWND topwindow, HWND instance, FARPROC callback)
{
 switch (md)
 {
 case ext_load:

;; Load external routine; not in use.

case ext_unload:
;; Unload external routine; not in use.

break;
case ext_call:
;; Call external routine.

if (GetFldInt(ref_parmcnt, callback) != 4)
{

MessageBox (mWind, "Invalid numbers of parameters!
\n\nReadInteger …(filename, section, key, standard value)",
"AB_INI.DLL -ReadInteger()",

…MB_OK|MB_ICONINFORMATION);
return;

}

3rd Gen. Programming External Routines 23

;; Test to see whether four parameters have been given in the call to the
external routine. If not, give error message and cancel the external
routine.

}
get_parameter_info(callback);
;; Select file name, section and key field from among the parameters.

nInitvalue = GetFldInt (ref_parm4, callback);
;; Read the standard value from parameter no. 4.

nValue = GetPrivateProfileInt ((LPSTR)szSectionName,
(LPSTR)szKeyfield, …nInitvalue, (LPSTR)szFilename);

;; Read in value from the .INI file, or insert the standard value if the .INI
file is empty.

SetFldInt (ref_returnval, nValue, callback);
;; Return the retrieved value to the correct field in Omnis.

 }
}

/*==
ReadString()

This function reads in a string from an .INI file. The function has the
following four parameters:

szFilename The name of the .INI file.
szSectionName The name of the section in the .INI file
[SectionName].
szKeyfield The name of the key field from which the value

is to be read.
szInitstring The string to be returned if this line doesn’t exist

in the .INI file.

NB! This function should be called using the ‘Call External with return
value’ command, where you designate the field to which the value is to
be returned.
===*/
void FAR PASCAL ReadString (int md, HANDLE far *ref, HWND mWind,
HWND …topwindow, HWND instance, FARPROC callback)
{
 switch (md)
 {
 case ext_load:

;; Load external routine; not in use.

24 External Routines 3rd Gen. Programming

 case ext_unload:
;; Unload external routine; not in use.

break;
 case ext_call:

;; Call external routine.

if (GetFldInt(ref_parmcnt, callback) != 4)
{

MessageBox (mWind, "Invalid numbers of parameters!
…\n\nReadInteger(filename, section, key,
…standard value)", "AB_INI.DLL -ReadString()",

…MB_OK|MB_ICONINFORMATION);
 return;
}
;; Test to see whether four parameters have been given in the call to the

external routine. If not, give error message and cancel the external
routine.

get_parameter_info(callback);
;; Select file name, section and key field from among the parameters.

GetFldVal (ref_parm4, fmt_cstring, 100, szInitstring, callback);
;; Read the standard value from parameter no. 4.

GetPrivateProfileString ((LPSTR)szSectionName, (LPSTR) szKeyfield,
…(LPSTR)szInitstring, (LPSTR)szValue, 100,(LPSTR)szFilename);
;; Read in value from the .INI file, or insert the standard value if the .INI

file is empty.

SetFldVal (ref_returnval, fmt_cstring, szValue, callback);
;; Return the retrieved string to the correct field in Omnis.

 }
}

/*==
WriteInteger()

This function reads in an integer from a .INI file. The function has the
following four parameters:

szFilename The name of the .INI file.
szSectionName The name of the section in the .INI file
[SectionName].
szKeyfield The name of the key field to which the integer is
to be written.

3rd Gen. Programming External Routines 25

nValue The integer to be written to the .INI file.

NB! This function should be called using the ‘Call external routine’
command in Omnis.
===*/
void FAR PASCAL WriteInteger (int md, HANDLE far *ref, HWND
 mWind, HWND topwindow, HWND instance, FARPROC callback)
{
 switch (md)
 {
 case ext_load:

;; Load external routine, not in use.

 case ext_unload:
;; Unload external routine, not in use.

break;
 case ext_call:

;; Call external routine.

if (GetFldInt(ref_parmcnt, callback) != 4)
{
 MessageBox (mWind, "Invalid number of

parameters!\n\nWriteInteger… …(filename, section, key,
value)", "AB_INI.DLL- WriteInteger()",

…MB_OK|MB_ICONINFORMATION);
 return;
;; Test whether there are four parameters in the call to the external

routine. If not, display error message and cancel the external routine.

}

get_parameter_info(callback);
;; Select file name, section and key field from parameters.

nValue = GetFldInt (ref_parm4, callback);
wsprintf ((LPSTR)szValue, "%d", nValue);
;; Read in the number from parameter 4, and convert it to a string.

WritePrivateProfileString ((LPSTR)szSectionName,
(LPSTR)szKeyfield, (LPSTR)szValue, (LPSTR)szFilename);

;; Write the string containing the number to the .INI file.

 }
}

/*==
WriteString()

26 External Routines 3rd Gen. Programming

This function writes a string to an .INI file. The function has the
following four parameters:

szFilename The name of the .INI file.
szSectionName The name of the section in the .INI file
[SectionName].
szKeyfield The name of the key field to which the value is to

be written.
szValue The string to be written to the .INI file.

NB! This function should be called using the ‘Call external routine’
command in Omnis.
=== */
void FAR PASCAL WriteString (int md, HANDLE far *ref, HWND

 mWind, HWND topwindow, HWND instance, FARPROC callback)
{
 switch (md)
 {
 case ext_load:

;; Load external routine; not in use.

 case ext_unload:
;; Unload external routine; not in use.

break;
 case ext_call:

;; Call external routine.

if (GetFldInt(ref_parmcnt, callback) != 4)
{
 MessageBox (mWind, "Invalid numbers of

parameters!\n\nWriteString …(filename, section, key,
standard value)", "AB_INI.DLL -WriteString()",

…MB_OK|MB_ICONINFORMATION);
 return;
;; Test to see whether four parameters have been given in the call to the

external routine. If not, give error message and cancel the external
routine.

}

get_parameter_info(callback);
;; Select file name, section and key field from among the parameters.

GetFldVal (ref_parm4, fmt_cstring, 100, szValue, callback);
;; Read the value to be stored from parameter no. 4.

WritePrivateProfileString ((LPSTR)szSectionName,
(LPSTR)szKeyfield, (LPSTR)szValue, (LPSTR)szFilename);

;; Write the string to the .INI file.

3rd Gen. Programming External Routines 27

 }
}

/*==
get_parameter_info()

This function selects the content of the first three parameters to be
sent to the functions handling the .INI file. The parameters are:

szFilename The name of the .INI file.
szSectionName The name of the section in the .INI file
[SectionName].
szKeyfield, The name of the key field under the section.
===*/
int get_parameter_info (FARPROC callback)
{
 GetFldVal (ref_parm1, fmt_cstring, 100, szFilename, callback);
 GetFldVal (ref_parm2, fmt_cstring, 100, szSectionName, callback);
 GetFldVal (ref_parm3, fmt_cstring, 100, szKeyfield, callback);
 return 1;
}

/*===
LibMain()

Library Main. This function must be included in all external routines. It
establishes a kind of link between Omnis and itself and manages the
pointers of the various segments.
===*/
int FAR PASCAL LibMain(HANDLE hInstance, WORD wDataSeg, WORD

 cbHeapSize, LPSTR lpszCmdLine)
{
 if(hLibInstance == NULL)

hLibInstance = hInstance;

 if(cbHeapSize != 0)
UnlockData(0);

 return (hLibInstance) ? TRUE : FALSE;
}

/*===

28 External Routines 3rd Gen. Programming

WEP()

WindowsExitProcedure. Must be included in the external routine. This
function “cleans up” in the memory after the external routine has been
called and carried out.
==*/
int FAR PASCAL WEP (int bSystemExit)
{
 return 1;
}

3rd Gen. Programming External Routines 29

AB_INI.DEF

LIBRARY AB_INI
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
DESCRIPTION 'AB_INI.DLL - The handling of .INI files from Omnis 7'

CODE MOVEABLE DISCARDABLE PRELOAD
DATA MOVEABLE SINGLE PRELOAD
HEAPSIZE 1024

EXPORTS
ReadInteger @1
ReadString@2
WriteInteger @3
WriteString @4
LibMain @5
WEP @6 RESIDENTNAME

Introduction to Notation

What is Notation?.. 2
Some areas of use
Notation in Window formats

The Branched System ... 4
The crude command structure
The different parts
The relation between the attributes

How to Write Notational Expressions.. 10
Where to put them?
What can we derive from a notational expression?
Altering the values of attributes
Abbreviating long expressions
“Current” attributes
Square brackets

Syntax and Debugging .. 18
Notations can be cranky
“Context-sensitive” help for attributes and objects
Continuous testing of notational expressions
Error handler procedures

Windows and Notation.. 25
Background objects and other objects
Open and closed windows
A word about colors

2 Introduction to Notation 3rd Gen. Programming

What is Notation?

Version 2.0 of Omnis introduced a whole new system of commands
called “metatools” (or notational commands). There are many of
them – 398 to be exact – and there is a special way of writing them.
What they all have in common is the fact that they allow the
developer to give commands in his procedures that once had to be
given directly using Omnis menus and various dialog boxes. An
example of such a command is ‘$hasborder,’ which can be used to
determine whether a field shall have a frame or not. In earlier
versions this was something we had to set when building the
windows; after that it couldn’t be changed unless we returned to
Design mode. This is no longer the case.

Some areas of use

In principle it is now possible to get procedures to do everything that
can be done in Omnis, including the generation and modification of
all kinds of formats. In fact, this is what notation is all about. What
advantage is this to us? Well, among other things, we can allow
procedures to do things that the developer would otherwise do
himself. By and large, procedures are a whole lot quicker than we
are, no matter how adept we may be with the mouse. We can get
procedures to alter our applications for us, resulting in applications
that resemble CASE tools, or we can create our own “templates” for
regular formats.

Developer’s tools and automated programming
By adding new “tools” we can use notation to broaden
the scope of the Omnis interface. These tools are based
on the commands that already exist and greatly
enhance functionality. This will help the developer
improve the efficiency of all kinds of routine tasks. It’s
a tempting thought to devise procedures that set Omnis
just the way we want – for example, with respect to
‘Help’ options, ‘Long/mixed field names,’ etc.
Moreover, we can use notation to make our own
variations of standard windows, or to edit existing
windows in some specific way. Some of you may

3rd Gen. Programming Introduction to Notation 3

recall Omnis Express; it’s now possible to create a
similar application without the aid of external routines.

Forbidden and inaccessible areas
The notational commands give us an enormous
potential for manipulating everything from the data in
datafiles to fields in reports and graphics in windows.
We can delete and create new file formats, indexes and
fields, and modify nearly anything you can name. With
power like this, you’d have thought it would be easy to
get Omnis to crash; but the notational code is
remarkably stable. In short, we can penetrate deeply
into areas of programming that were once forbidden.
Grasping the scope of the new potential may take some
doing, but it’s well worth the effort.

Notation in Window formats

With notation, Omnis has made it possible for the developer to
program in detail, more like a 3rd-generation tool – particularly as
far as windows are concerned. Windows can be more interactive. For
example, drawn lines can move, point, change color, create an
illusion of 3–D, etc. as a reaction to what the end-user does. Each
developer can be inventive and devise clever and impressive ways of
communicating with the end-user and lift the user interface to new
heights. Much of what once had to be assigned to external routines
can now be programmed directly in Omnis. And don’t forget that we
are no longer prevented from using the mouse, since we now have
the functions MOUSEOVER, MOUSEDOWN, MOUSEUP, and
‘drag and drop.’ Those who’ve been burning with impossible but
bright ideas for their applications have every reason to rejoice.
Limitations are largely a thing of the past.

4 Introduction to Notation 3rd Gen. Programming

The Branched System

The crude command structure

In a normal programming language we are confronted with a long
list of commands that are rather general in nature; to execute a
specific action, we have to express it by writing in x number of
parameters, and do so in some sort of order that will not always be
that easy to remember. In notation, this problem is solved simply and
elegantly. First we define where we want to do something, and then
what we want to do. Once having gotten that far, the notational
expression is very nearly complete. That’s why syntax is often not a
problem. As a rule, one constant or value at the end of the command
is sufficient for the expression to attain full meaning.

The different parts

A notational expression looks like an incomprehensible series of
words separated by a period and sprinkled with a few dollar signs
and parentheses. First let’s look at the individual words themselves.
All the “words” in the notational system can be divided into two
categories – roughly speaking: (a) groups and (b) attributes.

Groups
A group represents a collection of related objects (for
example, windows, reports, or window fields).
Together with the name of the object, this gives us the
necessary information concerning where we wish to do
something – as follows:

$windows ;; the group of window formats
$windows.wCustomer ;; points at the window named
“wCustomer”

(Prl. 1)

The group name is written in the plural, so it always
ends in “s.” If we wish to go deeper, we can combine
groups in order to get at more detailed parts of the
application. For example, we might wish to do some-

3rd Gen. Programming Introduction to Notation 5

thing with a standard Pushbutton in a window. If the
name is ’Edit,’ the entire expression will be:

$windows.wCustomer.$objs.Edit (Prl. 2)

Now we have found our way to this very pushbutton
and are free to choose from among those commands
which lie under Pushbuttons in general. (We could also
have identified the Pushbutton with the window field
number (#EF), but that would only make the
procedures a lot more cumbersome to read.)

Attributes
The word “attribute” has such a broad meaning that
many tend to use it willy-nilly. Nevertheless, what we
can say is that it represents a characteristic that can be
read or altered. For example, if we wish to modify the
text in the ‘Pause’ pushbutton, we can write it like this:

Calculate $windows.wCustomer.$objs.Pause.$text as
"Go" (Prl. 3)

Here the attribute is $text; it is set to ‘Go’ with the help
of the ‘Calculate’ command. In this way we can
change a Pushbutton’s function and allow the text in
the Pushbutton to reflect this. (Read about the
difference between $winds and $windows before you
test this.)

The relation between the attributes

Now that we know the principal individual parts of the notational
system, we can turn our attention to the structure. As the examples
have illustrated, each object (“item”) has a number of characteristics
called attributes, which we can either read or modify. In a window,
an attribute might be the color of an object, the coordinates $top and
$left, the type of object (Pushbutton, List field, etc.), the field name,
and so on. And windows themselves have attributes of their own, for
example: the type of window (Palette, No frame, Dialog, etc.), title,
name, background color, etc.

6 Introduction to Notation 3rd Gen. Programming

General attributes
Each group and each object have their own attributes.
In addition to the special attributes, a set of standard
attributes is included which you should be able to use
everywhere, i.e. on any item or attribute. These include
the name of the attribute, identifier number, and other
general information.

An object is the sum of its attributes
In principle, the system of attributes should be so
developed that the sum of the attributes will comprise
everything that can be said about an object. In fact, this
is very often the case. If you change the attributes, you
will get a completely different object (within certain
bounds).

The groups
The “groups” are all-purpose terms for objects or
attributes that are related and that are used together
with the name of the object to indicate the exact part of
the application we wish to work with.

The root of the system
The system is constructed in branched levels. At the
top is $root, from which all groups and attributes
spring. This is the top of the pyramid. Under $root we
find groups such as the following:

$libs

$root

$datas $prefs

Fig. 1 The root of attributes

3rd Gen. Programming Introduction to Notation 7

Main groups under $root
The $libs group contains the various libraries, $datas is
the group of open datafiles, and under $prefs we find a
number of attributes that apply to Omnis as a whole.
(There are many more groups under $root; those we
have mentioned here are just a sample.) Let’s see what
we can find under $lib:

$libs

Statistics

$root

$datas $prefs

Experiments References

Fig. 2 Open libraries in a sample science application

Groups under a specific library
Now we have to decide which library we’re going to
work with. If we choose the “Experiments” library, the
following group turns up (shown in Figure 3):

$windows

$libs

Statistics

$root

$datas $prefs

Experiments References

$reports $menus$searches $prefs

Fig. 3 Groups under a specific library

8 Introduction to Notation 3rd Gen. Programming

Afterward, if we wish to peruse one of the reports in
“Experiments,” we follow the entire route as shown in
Figure 4 below:

$windows

$libs

Statistics

$root

$datas $prefs

Experiments References

$reports $menus$searches $prefs

Fig. 4 $root.$libs.Experiments.$reports

Choosing a report
Then all we need to do is add the name of the report
and continue working our way down in the system
until we arrive at the desired attribute. For each level
there is a set of attributes, each with its own meaning.
Take a look now at the lists of all the attributes in the
chapter on notation in “Reference 1.” That might give
you some idea of the scope of the branched nature of
the system.

The level determines the meaning
Several attributes can have the same name, but they
take on different meanings as we place them in
different levels. We can see from Figure 4 that the
$prefs group under $root is not the same as that under
a specific Library. If we look to see what is under each
of these two groups, we will see that the corresponding
attributes are totally unalike. The $prefs group under
$root represents the preferences that encompass Omnis
as a whole, whereas the $prefs group under a library
pertain only to the library to which they belong.

3rd Gen. Programming Introduction to Notation 9

Expandability and insight
The notational system is built to be expanded. As new
functions are built into Omnis, the notations keep pace.
The notational commands are like secret paths leading
to the inner sanctum of Omnis: the code itself. By
learning notation, you also learn a great deal about
how Omnis is put together, and quite a bit about how
limited or open-ended the functionality of the
individual commands is.

10 Introduction to Notation 3rd Gen. Programming

How to Write Notational Expressions

Where to put them?

Technically speaking, notational expressions are the same thing as
calculations, which means that we can insert them anywhere
calculation fields can be filled in. We can put them in regular
window fields, within procedures, in report fields, in search format
lines, and in menus – in fact, we can put them virtually anywhere.
And considering that it’s possible to set off the entire notational
expression in square brackets ([]), the list grows even longer. Go
ahead and put some notational expressions enclosed in square
brackets directly into free text in a window, in menu titles, or in
reports.

Simple syntax
All attributes and groups begin with a dollar sign ($).
Between different attributes and the like, we insert a
period, just as we separate file names and field names
when these occur together. (You will no doubt have
already noticed this.)

What can we derive from a notational expression?

A complete notational sentence can yield virtually anything and
everything. What we derive depends entirely on what the expression
consists of. If the last attribute in the sentence is a Boolean (yes/no)
variable, the result will be either yes or no (or blank). This is no
different from how we use Boolean variables in general. See
Procedure line 4 (Prl. 4):

Calculate #F as $windows.wCustomers.$closebox (Prl. 4)

If the window has a ‘closebox,’ #F will be equal to 1 or
Yes. If the last attribute is a text variable, the text will
be set accordingly. See Prl. 5:

Calculate #S1 as $root.$libs.MyLib.$pathname (Prl. 5)

3rd Gen. Programming Introduction to Notation 11

For Macintosh, #S1 can be set to “Fat harddisk: Omnis
applications:Testing and Experiments: Mylib.” For
Windows machines, #S1, for example, can be set to
“C:\DOCS\OMNISAPP\ TESTING\MYLIB.LBR.”

Constants
Certain numerical variables have values that are
consistent with some of the predefined constants in
Omnis. This means there’s a good chance we’ll see a
reasonably understandable name for a constant, and
not some cryptic number. This is true, for example, of
$objtype, which tells us which type of window field
the object in question is. Instead of the number, we can
derive the name of the constant by inserting the answer
in a text variable, as shown in Prl. 6. Omnis will trans-
late the number value and display the name of the
constant without the prefix “k.”

Calculate #S1 as
$windows.wCustomers.$objs.Edit.$objtype (Prl. 6)

In this case, #S1 gets the text “pushbutton.” The
corresponding constant is called ‘kPushbutton.’

Altering the values of attributes

Most attributes can be altered in a variety of ways. We have already
used the ‘Calculate’ command and placed the notational expression
where we usually place the field name:

Calculate $winds.wPanel.$objs.Pause.$text as "Go" (Prl. 7)

The method shown in Prl. 7 is OK, but it has its
limitations. Let’s approach it from a slightly different
angle:

Calculate #F as
$winds.wPanel.$objs.Pause.$text.$assign("Go")

(Prl. 8)

Calculated with flag

12 Introduction to Notation 3rd Gen. Programming

The technique illustrated in Prl. 8 has a number of
advantages. Firstly, the expression will yield a Boolean
value, provided the command was successful. (The
$assign attribute is a command signifying “set to.”) In
this particular case, the Boolean value ends up in #F.
Secondly, the calculation field can be expanded
(CMND/CTRL-U), which enables us to see the whole
expression at a glance when we type it in. This makes
it easier to edit big expressions. Thirdly, this is the
only way there is to modify attributes outside
procedures, i.e. when the notational expression occurs
in an isolated calculation (not as a part of a procedure).
As I see it, this will also make the expression clearer
because it will not be divided up.

Abbreviating long expressions

Notations have an unfortunate tendency to grow rather long,
demanding lots of tedious typing. It’s only near the end of the
expression that things start getting interesting. Moreover, it is often
the same object being referred to in each notational expression,
which means we’ll be writing the same thing over and over again.

Item reference
Here is where ‘Item reference’ comes in. This is a new
type of field that can be inserted in file formats or
declared as Library variables, Format variables, or
Local variables. An Item reference is a pointer that can
be used as a legitimate replacement for the entire
expression. We can say it works like an abbreviation
for a lengthy notational expression. The effect is like
inserting the whole expression every time the Item
reference is used. The notational expression as a whole
will read whatever is already written there, plus the
“contents” of the Item reference.

Local variable Lo_PUSHBUTTON (Prl. 9)

When an Item reference variable has been declared (as
shown in Prl. 9), we must decide what the reference
shall point to (Prl. 10).

3rd Gen. Programming Introduction to Notation 13

Set reference Lo_PUSHBUTTON to
$windows.wPanel.$objs.Pause

(Prl. 10)

Now we can abbreviate the notational expression and
quickly add a couple of new commands (Prl. 11–13):

Calculate #F as Lo_PUSHBUTTON.$text.$assign("Go") (Prl. 11)
Calculate #F as Lo_PUSHBUTTON.$forecolor.$assign(16) (Prl. 12)
Calculate #F as Lo_PUSHBUTTON.$backcolor.$assign(8) (Prl. 13)

Omit attribute
It’s not always necessary to type in the entire row of
groups and attributes. Some of them are apparent,
based on the kind of name and subsidiary attributes
that are specified. $root, for example, rarely ever needs
to be specified. Generally speaking, it is sufficient to
write only as much as it takes to make the expression
unambiguous within a specific application. If you find
yourself wondering whether a part of an expression
can be dispensed with, it’s possible to test whether
$canomit is true or false for that part of the expression.
This attribute can be inserted after any other attribute.
In Prl. 14, #F is equal to True.

Calculate #F as $root.$clib.$canomit (Prl. 14)

“Current” attributes

The notational system also contains a couple of shortcuts in the form
of attributes which take the drudgery out of writing an expression.
As they all sort under $root, there is only one of each in any given
application. This means there is only one “current” window, one
“current” procedure, and so on.

About “Current”
Concerning the attributes described here, ‘Current’
reflects the object the user is in contact with at all
times. This needn’t have anything to do with where the
cursor happens to be blinking; what matters is where

14 Introduction to Notation 3rd Gen. Programming

the end-user clicks with the mouse, not where the
cursor is positioned.

$cobj
The Current object is the window field that the user is
in contact with in some way or another. In practice,
this is frequently the very object that contains the field
procedure the developer is working on. Procedure 1
shows how $cobj may be used to address the field to
be highlighted:

Field procedure, Entry field Procedure 1

If #BEFORE
Calculate #F as $cobj.$backcolor.$assign(1) ;; Set to white

Else if #AFTER
Calculate #F as $cobj.$backcolor.$assign(9) ;; Back to gray

End if

The field containing Procedure 1 is an Entry field with
a gray background (the window also has a gray
background). When the end-user enters the Entry field,
the background shifts to white. When he exits the field,
the background color reverts to light gray. This is a
sterling way of showing where the cursor is.

$cproc
This attribute points to the procedure that’s currently
running. It applies to field procedures, menu
procedures, and all kinds of control procedures.

$cwind
The $cwind attribute refers to the window that contains
the object the end-user is in contact with. In most cases
this will be the topmost window on screen.

$clib

3rd Gen. Programming Introduction to Notation 15

The $clib attribute (Current library) is the library that
contains the format owning the field or object the user
is in contact with, or the library that contains the
procedure being run. In short, it’s just the library you
would expect to be “Current” library. This attribute is
useful when more than one library is in use at a time.

$dlib
The library that has been set to ‘Design library,’ i.e. the
library the developer is most likely to be working with,
is referred to as $dlib.

Omitting parts of an expression
When no window has been designated, Omnis assumes
that the expression applies to $cwind. The same thing
applies if no library in particular has been designated,
in which case Omnis uses $clib. The attribute $canomit
for those groups that are not written is actually not
‘true’; the way in which Omnis interprets the
expression nevertheless gives it meaning. So the
developer can often, in good conscience, leave out the
bulk of the full expression, which will save him a lot of
unnecessary typing.

Getting the name of “Current” attributes
Let’s look at a case involving some unusual syntax that
many developers might have problems with. If, for
example, we wish to know the name of the object that
is “current,” we must write the notational expression as
follows:

Calculate NAME as $cobj().$name (Prl. 15)

Please note the parentheses after $cobj in Prl. 15. It
might seem that the natural thing would have been to
leave them out; but we can’t, and that’s that. This way
of writing also applies to the other “Current” attributes,
i.e. $clib, $dlib, $cdata, $cwind, etc.

16 Introduction to Notation 3rd Gen. Programming

Square brackets

Variables and calculations set off by square brackets are accepted
anywhere in the expression. This is one means of using the same
notational expressions in a number of different situations. It is also a
means of allowing us to use the same expression to manipulate more
than one object (i.e. various fields or formats). Everything within
square brackets will be “carried out” and the result put into the
notational expression before the notation itself is performed.

Dissimilar object names
It is possible to insert a variable in square brackets
instead of the name of window fields, format names, or
the like, such as:

Calculate #F as
$winds.[#TOP].$head.$title.$assign("Topmost!")

(Prl. 16)

In the rather supercilious example in Prl. 16, the
window that lies at the top of the stack of open
windows on screen is given the title “Topmost!”

Dissimilar attributes and values
If we want different actions based, for example, on the
user’s selections, one variable can be made to contain
the attribute’s name, and another variable what the
attribute is to be set to.

Change action depending on value of #1 2

Local variable Lo_Attribute (Character)
Local variable Lo_Value (Short integer)

Switch #1
Case 1

Calculate Lo_Attribute as "$backcolor"
Calculate Lo_Value as 3

Case 2
Calculate Lo_Attribute as "$linestyle"
Calculate Lo_Value as 12

3rd Gen. Programming Introduction to Notation 17

Default
Calculate Lo_Attribute as "$forecolor"
Calculate Lo_Value as 1

End switch

Calculate #F as $cobj.[Lo_Attribute].$assign(Lo_Value)

Change action depending on value of #1 (2)
In this example, we imagine that the #1 variable is set
in accordance with the user’s actions. Then, when
#1=1, the background color is set to 3 (= red by
default); when it is 2, the line style is set to 12 (= a
dash variant); and when it is 3, the foreground color is
set to 1 (= white by default). The main point of
Procedure 2 is that the notational expression can
change function completely, depending on the values
in Lo_Attribute and Lo_Value.

18 Introduction to Notation 3rd Gen. Programming

Syntax and Debugging

Notations can be cranky

One of the problems with notational programming lies in
determining how to express what we want. This isn’t always so easy,
notwithstanding the strictly logical way in which the system is built
up. Nor do we get all that much help from Omnis when the
notational expression fails. There are many expressions which seem
perfectly fine and yet don’t accomplish what we want them to. Also,
there are times when an otherwise acceptable notational expression
just won’t work, because as you test your application the way the
user will encounter it, the settings the expression depends on will
have changed. A typical example is the fact that a window is not
regarded as “open” when in Design mode, and any references to
$cwind (i.e. “current open window”) will not be valid.

In the event of errors
A notational error will not cause the procedure to stop;
the procedure will merely ignore the notation and
continue to run. This is a positive thing as far as the
stability of the procedure is concerned, but it makes
debugging that much more difficult.

“Context-sensitive” help for attributes and objects

We aren’t completely left to our own devices, however. Built into the
notation is a comprehensive system of helps, where we can glean
important information about attributes in measured doses. In many
cases this will eliminate the need to consult the user’s manual (or the
Omnis Help window that briefly explains the Omnis commands).

$desc
Accompanying every attribute is a short string of text
that defines what the attribute stands for. This serves
well as a kind of reminder, but it won’t help you all
that much unless you are already familiar with the

3rd Gen. Programming Introduction to Notation 19

function. In Prl. 17 #S1 receives the description of
$closebox:

Calculate #S1 as
$windows.wCustomers.$closebox.$desc (Prl. 17)

In this case, #S1 becomes: “True if the window has a
close box or system menu.”

$desc and $add
When confronted with a $add operation, most people
wind up scratching their heads. They can’t quite
remember what information was required for the
particular group they wanted to place an object in, let
alone in what order the information was to appear.
Then it helps to describe the syntax like this:

Calculate #S1 as $cwind.$bobjs.$add.$desc (Prl. 18)

After this, #S1 will contain the information you need
for adding a new background object in an open
window:

“$add(type,top,left,height,width,invisible,disabled) or
$add(object) adds a new field or object to the window.”

$cando
If you find yourself wondering whether it’s possible to
realize a given notational expression, you can tack on a
$cando at the end. If all goes well, the answer should
be ‘kTrue.’ But keep in mind that the circumstances
should be as similar as possible under Design mode
and when the application is running. The difference
can cut both ways. For example, the notation may
function well in Design mode but not when the
application is running normally; but the opposite can
also be the case. Later on we’ll take a look at a more
reliable, less on-again-off-again method for testing
notation.

What attributes are present?

20 Introduction to Notation 3rd Gen. Programming

At every level of the notational hierarchy there is a set
of standard attributes, special attributes, and (where
applicable) standard group attributes. These are all
carefully described in the chapter on notation in
“Reference 1.” But it can be useful to have a more
direct overview, without having to look things up in
the manuals. Procedure 3 fits the bill.

(Remember that $att(n) is a pointer for attribute
number “n,” $attcount is the number of different
attributes that may be used with the expression in
question, and $name is the name of the attribute.)

Make attribute list 3

Local variable Lo_No_Of_Attributes (Long integer)
Local variable Lo_Att_No (Long integer)
Local variable Lo_Name (Character)
Local variable Lo_Description (Character)
Local variable Lo_Notation (Character)
Local variable Lols_Attributes (List)

Calculate Lo_Notation as "$root"

Calculate Lo_No_Of_Attributes as [Lo_Notation].$attcount
Set current list Lols_Attributes
Define list {Lo_Name,Lo_Description}

For Lo_Att_No from 1 to Lo_No_Of_Attributes step 1
Calculate Lo_Name as [Lo_Notation].$att(Lo_Att_No).$name
Calculate Lo_Description as [Lo_Notation].$att(Lo_Att_No).$desc
Add line to list

End For

Breakpoint {;; LoLs_Attributes}

Compiling a list of attributes (3)
The above is a fairly good general procedure for this
purpose. Insert the desired notational expression in
Lo_Notation. In Procedure 3 this is set to “$root,” but
you can alter it to suit yourself. Since the procedure
uses its own local list (so as not to interfere with other

3rd Gen. Programming Introduction to Notation 21

lists in the application), it must be halted before it has
finished running, otherwise the list will disappear from
memory. A ‘Breakpoint’ command has been inserted
in the last line for this very purpose. Using OPT/RB,
click on LoLs_Attributes in the line with the
‘Breakpoint’ command, and you may use the Popup
menu to view the list contents.

Continuous testing of notational expressions

Earlier we used #F to check whether a notational expression had
been successfully carried out. If we are to test for each line (which is
a smart way to start out), the procedures will be inordinately long
when we check the flag in this way. In fact, it will mean using three
whole lines for each test, as shown in Procedure 4:

Test notation 4

Calculate #F as $cwind.$closebox.$assign(kTrue)
If flag false

Breakpoint ;; In case of an error, the procedure stops here.
End if

In any advanced application there are likely to be a
good many notational expressions, and umpteen
variations of the above procedure can be rough going
indeed. But we can do something really clever instead:

1. Declare your own personal WASDONE.

Define a global Boolean variable in a file format or as
a Library variable:

Library variable WASDONE (Boolean) (Prl. 19)

(The name is immaterial; we could have called it
SUCCESS, EXECUTED, FLAG, NOTATION,
ASSIGN, or something similar.)

22 Introduction to Notation 3rd Gen. Programming

2. Put it in the ‘Break calculation.’

Then click with OPT/RB on the variable and select ‘Set
calculation’ from the popup menu. (The calculation in
question is the Break calculation.) We set it as shown
in Prl. 20:

WASDONE=not(kTrue) (Prl. 20)

The ‘Break on calculation’ option is turned on
automatically, which gives us an “active” alternative to
the cumbersome test shown in Procedure 4. In the
notational expressions, we use WASDONE instead of
#F. If the execution of the notational expression is not
successful, WASDONE will equal ‘Empty’ and Omnis
will stop and show you the right procedure! The new
version of procedure 4 consists of only one line:

Calculate WASDONE as $cwind.$closebox.$assign(kTrue) (Prl. 21)

Thus no further testing of flag is necessary. When the
application has been successfully debugged, we can
turn off ’’Break on calculation.’

Having continuous testing as a standard

Those who like this method might perhaps wish it were turned on
automatically at each work session. Procedure 5 will execute what
was just explained in the foregoing paragraph.

Initialize active notation testing 5

Library variable WASDONE (Boolean)
Set break calculation on WASDONE {WASDONE=not(kTrue)}
Field menu command: Set Break On Calculation

Automatic initialization (5)
We can call this procedure when we boot the system. If
your application already has password protection, you
can run this procedure, for example, if #UL=0 (i.e. if
“Master password” has been given). ‘Master user,’ as
default, has all rights, so more than likely, ‘Master

3rd Gen. Programming Introduction to Notation 23

user’ is the developer himself – in person! Thus you
can make things ready for development work when the
developer logs on, and prepare the way for running the
application as usual at all other user levels.

Error handler procedures

The system of ‘Error handler’ procedures in Omnis also applies to
notation. If the notation contains an error answering to one of the
error messages here, it will be in the hash variable #ERRTEXT and
the code number will be in #ERRCODE. One way to exploit this is
to use your own Error handler procedure. This is an otherwise
normal procedure that is called every time #ERRCODE is greater
than 0 (null = no errors), alternatively within the error code range as
specified when the ‘Load error handler’ command is used. These
variables are evaluated for each command or action in your
procedures and, as such, quickly disappear as far as the developer is
concerned. Therefore we must “grab” the content just after the error
has occurred, either in the next procedure line (which is tiresome in
the long run) or with the aid of an Error handler procedure.

We decide which procedure is to be our Error handler
procedure with the command ‘Load error handler’:

Load error handler STARTUP/500 {Error handler
procedure}(Prl. 22)

As indicated in the procedure address in Prl.22, we
have decided to put the procedure at the end of the
STARTUP menu format. We may write the procedure
itself in the following way:

Error handler procedure 6

Local variable Lo_ErrorMessage(Character)
Local variable Lo_ErrorCode(Character)

Calculate Lo_ErrorMessage as #ERRTEXT
Calculate Lo_ErrorCode as #ERRCODE
Breakpoint

24 Introduction to Notation 3rd Gen. Programming

Error handler procedure (6)
If an error crops up in the procedure line, the Error
handler procedure is run immediately. #ERRTEXT
winds up in Lo_ErrorMessage, and #ERRCODE winds
up in Lo_ErrorCode. The ‘Breakpoint’ command at the
end enables us to read the local variables (i.e. they
keep them from vanishing from memory); in addition,
the address of the procedure line that caused the error
will now appear in the ‘Stack’ menu.

3rd Gen. Programming Introduction to Notation 25

Windows and Notation

We conclude this chapter by taking a closer look at windows and
notation. In many ways, windows have enjoyed most of the
advantages of the notational system. Although not everything is self-
evident, you needn’t despair! After a few points are clarified, a
whole new universe of possibilities will open up and hopefully all
you enthusiastic developers out there will start burning the midnight
oil.

Background objects and other objects

Most of what is stored in a window format can be found in the
following groups: $objs, $bobjs, and $procs, each of which have
their own objects and their own personalized attributes.

$objs
The $objs group contains all Entry fields, Check
boxes, Pushbuttons, Tables, Lists, and other normal
fields we would expect to see in the foreground of a
window. They can be identified by name ($name),
which is the text we find in the procedure title in the
procedures that lie under the fields. (The text shown in
the window isn’t that important.) These objects can
also be identified by their field number, which is handy
if, for example, you know that the name itself is bound
to change sooner or later.

$bobjs
Background objects are all the rectangles, lines, free
text, pictures, etc. that lie directly “on” the window.
They are identified by their number. This number is
assigned only once (just like the RSN) and is not
reused when a background object is deleted. The
numbers start at 1001. The easiest way to see them is
to make a list with $name and $objtype, perhaps the
coordinates ($top, $left) and other attributes as well, as
shown in Prl. 23:

26 Introduction to Notation 3rd Gen. Programming

Calculate #L1 as…
…$windows.wWindow.$bobjs.$makelist($ref.$name,
…$ref.$objtype,$ref.$top,$ref.$left,$ref.$width,$ref.$h
eight)

(Prl. 23)

Let’s say we discover that the rectangle we want to be
green is no. 1032. The notation will be as shown in Prl.
24:

Calculate WASDONE as…
…$winds.wWindow.$bobjs.1032.$forecolor.$assign(4) (Prl. 24)

$procs
In the $procs group we find the procedures that are
behind the fields in the window. Each procedure is
identified by its title or field number (which is also the
procedure number). The example shown in Prl. 25
copies Procedure 0 in the ‘wWindow’ over to #S1.

Calculate #S1 as $windows.wWindow.$procs.0.$proctext (prl.25)

A word about numbering and identifying
We already know that normal foreground objects can
be identified by their field number (#EF) or name. The
field name is also the name of the corresponding
procedure, which means that the field name can be
used to locate the procedure under the surface.

There is, however, a certain overlapping between the
$objs group and the $bobjs group. If we refer to an
object in the $objs group by a field number greater
than 1000, this is like pointing to a background object.
Likewise, objects in the $bobjs group with numbers
smaller than 1001 will be interpreted as foreground
objects. Now let’s try to change the foreground color
of a foreground field with the field number 5 and
afterward do the same thing with a background field
with the identification number 1023:

3rd Gen. Programming Introduction to Notation 27

Front object, field number 5:
Calculate #F as $cwind.$objs.5 .$forecolor.$assign(4) (Prl. 26)
Calculate #F as $cwind.$bobjs.5 .$forecolor.$assign(4) (Prl. 27)

Background object, field number 1023:
Calculate #F as
$cwind.$objs.1023 .$forecolor.$assign(4) (Prl.28)
Calculate #F as
$cwind.$bobjs.1023 .$forecolor.$assign(4) (Prl.29)

(Here, Prl. 26 means the same as Prl. 27, and Prl. 28
means the same as Prl. 29.)

$ident
It is important to keep the field numbers separate from
the $ident numbers, which follow another system.
Omnis uses the latter in every group of attributes. They
are assigned only once and start at 1001, just like the
numbering of background objects. We get this
identification number by using the attribute $ident, as
shown in Prl. 30:

Calculate #1 as $windows.wTest.$objs.Find.$ident (Prl. 30)

So #1 contains the identification number of the object
‘Find.’ Here the name of the field is “Find,” just like
the name of the procedure underneath. Imagine that the
field number (#EF) is 7 and that $ident is 1014. If we
want to identify an object with the aid of the $ident
number, we have to use the ‘$findident’ command. In
Prl. 31-33 we use the various ways of identifying the
‘Find’ object to change its foreground color:
Identified by field name:
Calculate #F as
$winds.wTest.$objs.Find. $forecolor.$assign(4)

(Prl. 31)
Identified by field number (#EF):
Calculate #F as
$winds.wTest.$objs.7 .$forecolor.$assign(4)

(Prl. 32)
Identified by $ident number:
Calculate #F as…
…$winds.wTest.$objs.$findident(1014) .$forecolor.$
assign(4)

(Prl. 33)

28 Introduction to Notation 3rd Gen. Programming

Open and closed windows

In Omnis we have two groups of windows; the one, $winds, are
windows that are always open; the other, $windows, are the window
formats, i.e. the collection of “recipes” for all the windows in a
library. When a window is opened, Omnis uses the appropriate
recipe to build the window such as it will appear on screen. So we
can regard a window in the $windows group as a kind of list of
instructions.

In memory

On disk

$windows
Window

$winds

Fig. 5 Open window group ($winds) and window format group
($windows)

Altering a window’s appearance by means of notation
This is one of the most exciting aspects of notation. If
we wish to see the changes directly (for example, use a
change of color to communicate with the end-user), the
notation must work with objects or background objects
in an open window. We find the window in the $winds
group. The changes show up at once, without the need
for redraw. If we want to keep the changes, ‘Store
window’ must be executed before the window is
closed; likewise, ‘Save format’ must be executed
before Omnis, the application, or the library in
question is closed. Try changing $linestyle,
$backcolor, $forecolor, $font, $fontsize, and

3rd Gen. Programming Introduction to Notation 29

$backpattern for all the background and foreground
objects in the open window. You’ll love it!

Modifying procedures in a window
At present, it is not possible to modify procedures in an
open window. You must turn to the window format as
it appears in the $windows group. If you wish to see
the effect of your changes, you may open the window
with the ‘Open window’ command. And if you want to
make the changes permanent, a ‘Save window’
command must be executed before you quit for the
day.

Saving the changes
When the developer applies the command ‘Store
window,’ the open window’s appearance will be
translated into an appropriate set of instructions, which
in turn are stored as the window format. The ‘Save
format’ command saves the window format to disk
(but it doesn’t effectuate the translation as the ‘Store
window’ command does).

Design mode
When a developer is working with a window in Design
mode, this is considered a special state; it is not “open”
at this point. You can tell that this is so, because all
Pushbuttons and other fields are inactive. The sys(50)
function never points to the window the developer is
working with in Design mode. Still, other windows
may appear to be active in the background; but to
make their corresponding procedures run, you’ll have
to bring one of the windows forward by clicking on it.
The Timer procedure, LCPs and WCPs are inactive.
The window in Design mode is stored automatically
and saved to disk as soon as the developer closes it.

A word about colors

When notation was introduced, numbers 1–16 (which identify the
colors in a library) took on added interest. However, it is a hard job

30 Introduction to Notation 3rd Gen. Programming

to remember which color goes with which number. It pays to make
your own constants, as shown in Procedure 7.

Color constants definitions 7

Library variable kBlack (Short integer)
Library variable kWhite (Short integer)
Library variable kLightGray (Short integer)
Library variable kDarkGray (Short integer)

Calculate kBlack as 1
Calculate kWhite as 16
Calculate kLightGray as 9
Calculate kDarkGray as 8

Calculate WASDONE as
…$cwind.$bobjs.1056.$forecolor.$assign(kDarkGray) (prl.29)

The code gets clearer
In your procedures, the result is clearer code. Note that
the values of these constants apply only to the default
colors. If the color table is modified in a library, the
developer will have to make adjustments by changing
the name and value of the color constants.

qCHhcq
Notation is the key that unlocks the Omnis

treasure chest.

qCcq

Section 9: Special Topics

Chapters:

1. Keyboard Shortcuts (Macintosh)

 (Macintosh)

Keyboard Shortcuts

Using Keyboard Shortcuts.. 2
Increasing the Number of Potential Hotkeys (v2.x only).. 3
Standard Hotkeys (2.x).. 5

Keys That Are Completely Unused 6
Word Processing Techniques.. 7
Hotkeys in v3.0.. 8

2 Keyboard shortcuts Special Topics

Using Keyboard Shortcuts

In Omnis the developer can allow the user to use keyboard shortcuts
(hotkeys) for the most frequently used commands. Merely add a
letter after a backslash (\) in the title of the menu procedure, and
Omnis will interpret and execute these automatically. However, there
are already a sizable number of hotkeys with CMND/CTRL
combinations in the standard menus. Various restrictions apply:
which letters can be used depends on which menus the developer
grants the user access to.

Choice of characters
The problem with hotkeys is that they can be hard to
remember at first. That’s why it’s important to choose
keys that will be easy to remember, e.g. the first letter
of a command. In the ‘Commands’ menu we already
have “I” for ‘Insert,’ and “E” for ‘Edit.’ In addition to
these tips, use your imagination.

Association with the command
This often means associating the letter (or number)
with the command in some way. Most people will
remember the first vowel. The number “1” can be
used, since it can signify “first.” Many will associate
“0” with making something equal to 0; or perhaps the
fact that “0” comes before “1” can be exploited. The
number “9” is the last number in the series of digits,
and as such can be made to signify “last.” And so on.
It’s probably a good idea to tell the user why you chose
the letters or numbers that you did. In any case, ease of
remembrance is a key factor in user-friendliness.

Differing keyboard layouts
Hotkeys only work (in v2.x) on the main character of a
key (not the optional character that some keys have). If
the end-user has to hold down SHIFT or some other
modifying key, the hotkey will not work. Bear this in
mind, since different countries have different keyboard
layouts.

Special Topics Keyboard Shortcuts 3

Increasing the Number of Potential Hotkeys
(v2.x only)

Instead of resorting to mediocre hotkeys, you will often find yourself
wishing you could use some other modifying key than CMND/CTRL.
Alas, it’s not all that simple.

#KEY and #SKEY
When ‘$keyevents’ for a library is turned on, this
means that Omnis is keeping a running track of which
key was last hit. This key is stored either in #KEY or
#SKEY, depending on whether it was a normal key or
a special key. In themselves they cannot be used for
regular hotkeys, since they receive either a normal or a
special key – not a combination of the two. On the
other hand, it is perfectly OK to use a special key alone
as a hotkey, for example HELP, HOME, END,
PAGEUP, PAGEDOWN, etc. The important point here
is that the function in question should not be too unlike
that suggested by the name printed on the key.

Combination with #OPTION or #SHIFT
One way of obtaining alternative hotkeys is by testing
the variables #OPTION/#ALT or #SHIFT in
conjunction with #KEY, for example in the Window
Control Procedure. The disadvantage with this is that
the character that winds up in #KEY will be an
alternative character, and not the letter printed on the
key that was pressed (for example “•” when hitting
OPT- “A”).

4 Keyboard shortcuts Special Topics

List of #SKEY codes

Here is a list of the most frequently used special keys, their #SKEY
values, and the accompanying constant:

#SKEY Constant Key name

17 kUp Cursor UP

18 kDown Cursor DOWN

19 kLeft Cursor LEFT

20 kRight Cursor RIGHT

21 kPUp PAGEUP

22 kPDown PAGEDOWN

25 kHome HOME

26 kEnd END

27 (#TAB) TAB

28 (#RETURN) RETURN

29 (#OK) ENTER (numeric
keypad)

30 kBack BACKSPACE

31 (#CANCEL) ESC / CLEAR (numeric
keypad)

34 kFwdDel Forward delete

35 - HELP

The keys where the constants are marked with a hash (#) have a
message variable sent when being used, so there is really no constant
needed.

Special Topics Keyboard Shortcuts 5

Standard Hotkeys (2.x)

To avoid duplication of hotkeys in the menus installed at any given
time, we have compiled a list of all the predefined hotkeys in Omnis
v2.x. It may help you find good candidates for hotkeys among those
characters that are available in your application.

Key Menu Command active when…

' Modify Uncomment Selected Lines editing procedures
0 Style Other sizes… editing window or report format
1 Design Cycle Formats design menu is displayed
2 Design Formats… design menu is displayed
3 Modify Window editing window format
3 Modify Report window editing report format
3 Modify Set access editing menu format
4 Modify Field List editing window or report format
5 Modify Procedures editing window format
6 Modify Tools to top editing window or report format
7 Modify Parameters editing report format
7 Modify Show Procedure Names editing procedures
7 Modify Window attributes… editing window format
8 Modify Modify Specified Format editing procedures
8 Modify Reorder fields editing window format
9 Design List Fields Names design menu is displayed
; Modify Comment Selected Lines editing procedures
A Edit Select All edit menu is displayed
B Style Bold editing window or report format
C Edit Copy edit menu is displayed
D Commands Delete Record a window is open*
D Modify Delete Line editing procedures
E Commands Edit Record a window is open*
E Modify Execute procedure editing menu format
F Commands Find Record a window is open*
F Design Find and Replace design menu is displayed
G Design Find Again design menu is displayed
I Commands Insert Record a window is open*
I Modify Insert Line editing procedures
I Style Italic editing window or report format
J Commands Insert With Current Values a window is open*
M Modify Install menu editing menu format
N Commands Next Record a window is open*
N Modify Next Procedure Line editing procedures
N Modify Show Narrow Sections editing report format
N Style Normal editing window or report format

6 Keyboard shortcuts Special Topics

O File Open Application file menu is not replaced
P Commands Previous Record a window is open*
R Modify Print Report editing report format
R Modify Show Window Actual Size editing window format
S Modify Save editing a format
T Design Replace Again design menu is displayed
U Style Underline editing window or report format
V Edit Paste edit menu is displayed
W Modify Open Window editing window format
X Edit Cut edit menu is displayed
Y Modify Show Debug Menus editing procedures
Y Modify Show Text Boundaries editing window or report format
Z Edit Undo edit menu is displayed
[Style Down (font size) editing window or report format
] Style Up (font size) editing window or report format
+ Stack Move up stack debug menus are displayed
- Stack Move down stack debug menus are displayed

* The ‘Show commands menu’ window option must be set.

Keys That Are Completely Unused

H, K, L

Special Topics Keyboard Shortcuts 7

Word Processing Techniques

There are a number of hotkeys which, when used in text fields, are a
boon to word processing, especially with a Powerbook or any other
computer with few special keys. Bjørn Kjølseth has cooked up the
list that follows.

Key Modify key Equivalent

Entry field,

Calculation

Lists,

Procedure lists

A CTRL Home First Line 1

A SHIFT+

CTRL

Shift-Home Select from cursor
through first character

Select from chosen
line through first line

D CTRL End Last Last line

D SHIFT+

CTRL

Shift-End Select from cursor
through last character

Select from chosen
line through last line

H CTRL Backspace Delete previous
character

N/A

K CTRL PageUp One page back One page up

K SHIFT+

CTRL

Shift-PageUp Select from cursor and
one page back

Select from line and
one page up

L CTRL PageDown One page ahead One page down

L SHIFT+

CTRL

Shift-
PageDown

Select from cursor and
one page ahead

Select from line and
one page down

C CTRL OK SNA perform an OK
(or ENTER)

N/A

I CTRL TAB SNA perform a TAB N/A

M CTRL RETURN Press RETURN
(carriage return in

multi-line field)

N/A

-> OPTION End of following word N/A

<- OPTION Beginning of previous
word

N/A

8 Keyboard shortcuts Special Topics

Hotkeys in v3.0

Most limitations concerning hot keys have been done away with in
v3.0, which allows us to use any combination of OPTION, SHIFT,
and COMMAND (Macintosh) or SHIFT, C TRL and ALT (Windows)
as modifying keys directly in menu formats. Until now, we’ve only
been allowed to use COMMAND or CTRL this way. Thus most of
this chapter applies to developers who will be using v2.x.

Section 10: Beyond the Tricky Bit

ISBN 82-91465-01-0

	One Step Up
	Table of Contents
	Introduction
	Prologue
	How the Book is Put Together
	How to Use the Table of Contents
	How This Book Came About
	Glossary

	General Methods
	The Planning Phase The Planning Phase
	General Considerations
	Evaluation of Data
	Comments and Labelling
	Working with Procedures

	Debugging
	General Considerations
	Window or Procedure?
	How the Procedure Window Is Built Up
	Finding the Right Procedure
	Manipulating the Way Procedures Are Run
	Viewing and Altering the Values of Variablesand Fields
	Examining the Sequence of Procedures
	Finding Clutter in the Application
	Debugging in Multi-user Mode
	In Conclusion

	Layout &the User Interface
	A Good Design
	Effects
	Logical Arrangement of Menus and Windows

	The Database Engine
	Data Structure:Memory & Hard Memory & Hard Disk
	Some Basic Terminology
	Structure of Data on Hard Disk
	Datafiles
	File Formats
	Records
	Fields
	Indexes
	The Function of the Internal Memory
	How the Internal Memory is Organized
	Variables

	Field Types &Their Function
	Introduction
	Text Fields
	Number Fields
	Boolean Fields
	Date Fields
	Time Fields
	Picture Fields
	Lists
	Binary Fields
	Sequence Fields

	File Connections
	In General
	Types of Connections
	Different Ways of Linking Files
	Commands for Editing Data in a Datafile
	Modifying Contents in a File of a Higher Levelwhile Modifying Another File

	Elements of an Application
	Datafiles & Libraries
	Application Structure
	Opening and Closing Libraries
	Controlling Datafiles
	CRB and Data Files
	Opening and Closing Datafiles
	Example of a Datafile Handling Procedure

	Sequence of Procedures
	Introduction
	Field Procedures
	Window Control Procedures (WCPs)
	Library Control Procedure (v2.x and v3.x) orApplication Control Procedure (v1.x)
	The Timer Procedure
	The Jig-Saw Model
	Windows in the Jig-saw Model
	Table Fields in the System (v2.0)
	Set Next Action (SNA)
	Queue Action
	Procedure Stack
	Tables of the Jig-Saw Model
	Tables – Macintosh
	Tables – Windows
	Events as Evoking Factors (Macintosh and Windows)

	Lists & Tables
	What Is a List?
	List Settings
	Manipulating Lists
	Displaying Lists in Windows
	Displaying Single List Values
	Lists Stored in Datafiles
	Lists within Lists
	Redrawing Lists
	Binary Search in Lists
	Tables

	Data Input
	Import & Export
	Introduction
	File Types
	Standard Export Tool
	Export via Reports
	Exporting to Word Processors
	Sequence Numbers
	Importing Connected Files
	The ‘Import Field From File’ and ‘Import Data’commands
	Update or Insert New Record?

	Data Output
	Search & Find
	Introduction
	Searching Within a Single File
	Searching in Connected Files
	Searches Spanning Several Generations
	Search Formats
	Speed Tests

	Communication
	3rd.Generation Programming
	External Routines
	Introduction
	What Is an External Routine?
	Examples of External Routines
	Can I Create an External Routine?
	Where Do External Routines Have to Be Before ICan Have Access to Them?
	When Should I Use External Routines?
	Which Functions in Omnis Are Used inConnection With External Routines?
	What Functions May I Use In an ExternalRoutine?
	The Stack Problem
	What If I Want to Know More?
	Difficult Words
	An Example with Source Code

	Introduction to Notation
	What is Notation?
	The Branched System
	How to Write Notational Expressions
	Syntax and Debugging
	Windows and Notation

	Special Topics
	Keyboard Shortcuts
	Using Keyboard Shortcuts
	Increasing the Number of Potential Hotkeys(v2.x only)
	Standard Hotkeys (2.x)
	Word Processing Techniques
	Hotkeys in v3.0

	Beyond the Tricky Bit

